Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The use of hydrogenated Schiff base ligands in the synthesis of multi-metallic compounds II

Mustapha, Abdullahi and Busche, Christoph and Reglinski, John and Kennedy, Alan R. (2011) The use of hydrogenated Schiff base ligands in the synthesis of multi-metallic compounds II. Polyhedron, 30 (9). pp. 1530-1537. ISSN 0277-5387

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Tris(2-hydroxybenzylaminoethyl)amine (H3L) complexes of nickel, copper and zinc are investigated as potential metallo-ligands ([(HxL)M]; x = 0, 1: M = Ni, Cu, Zn). The homometallic complexes formed are dimetallic ([{(HL)Ni)Ni(OAc)(2)] and [{(L)Zn}ZnCl]), tetrametallic ([{(L)Cu}Cu](2)(2+)) and hexametallic (R(L)Ni)Ni-2(mu-OH)(2)(OEt)(OH2)](2)). Hetero-dimetallic complexes can be formed with [(HL)Ni] and copper chloride ([{(HL)Ni}CuCl2]) or zinc bromide ([{(HL)Ni}ZnBr2]). The metallo-ligand acts as a chelating agent using phenolate pairs. The remaining phenolate either does not coordinate or can be used to increase the number of metals included in the scaffold from two to four or six. Not all combinations are possible and [(HL)Cur produces a charge separated species with zinc chloride rather than a complex. An exchange reaction is observed to take place when [(HL)Zn+ is treated with the halides of nickel or copper producing [(HL)M+ (M = Ni, Cu, respectively). (C) 2011 Elsevier Ltd. All rights reserved.