Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Molecular structures of THF-solvated alkali-metal 2,2,6,6-tetramethylpiperidides finally revealed: x-ray crystallographic, DFT, and NMR (including DOSY) spectroscopic studies

Armstrong, David R. and Garcia-Alvarez, Pablo and Kennedy, Alan R. and Mulvey, Robert E. and Robertson, Stuart D. (2011) Molecular structures of THF-solvated alkali-metal 2,2,6,6-tetramethylpiperidides finally revealed: x-ray crystallographic, DFT, and NMR (including DOSY) spectroscopic studies. Chemistry - A European Journal, 17 (24). pp. 6725-6730. ISSN 0947-6539

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The often studied THF solvates of the utility alkali-metal amides lithium and sodium 2,2,6,6-tetramethylpiperidide are shown to exist in the solid state as asymmetric cyclic dimers containing a central M2N2 ring and one molecule of donor per metal to give a distorted trigonal planar metal coordination. DFT studies support these structures and confirm the asymmetry in the ring. In C6D12 solution, the lithium amide displays a concentration-dependent equilibrium between a solvated and unsolvated species which have been shown by diffusion-ordered NMR spectroscopy (DOSY) to be a dimer and larger oligomer, respectively. A third species, a solvated monomer, is also present in very low concentration, as proven by spiking the NMR sample with THF. In contrast, the sodium amide displays a far simpler C6D12 solution chemistry, consistent with the solid-state dimeric arrangement but with labile THF ligands.