
Fibrational Induction Rules for Initial Algebras�

Neil Ghani, Patricia Johann, and Clément Fumex
University of Strathclyde, Glasgow G1 1XH, UK

{neil.ghani, patricia.johann, clement.fumex}@cis.strath.ac.uk

Abstract. This paper provides an induction rule that can be used to
prove properties of data structures whose types are inductive, i.e., are
carriers of initial algebras of functors. Our results are semantic in nature
and are inspired by Hermida and Jacobs’ elegant algebraic formulation of
induction for polynomial data types. Our contribution is to derive, under
slightly different assumptions, an induction rule that is generic over all
inductive types, polynomial or not. Our induction rule is generic over
the kinds of properties to be proved as well: like Hermida and Jacobs,
we work in a general fibrational setting and so can accommodate very
general notions of properties on inductive types rather than just those
of particular syntactic forms. We establish the correctness of our generic
induction rule by reducing induction to iteration. We show how our rule
can be instantiated to give induction rules for the data types of rose
trees, finite hereditary sets, and hyperfunctions. The former lies outside
the scope of Hermida and Jacobs’ work because it is not polynomial;
as far as we are aware, no induction rules have been known to exist for
the latter two in a general fibrational framework. Our instantiation for
hyperfunctions underscores the value of working in the general fibrational
setting since this data type cannot be interpreted as a set.

1 Introduction
Iteration operators provide a uniform way to express common and naturally
occurring patterns of recursion over inductive data types. Expressing recursion
via iteration operators makes code easier to read, write, and understand; facili-
tates code reuse; guarantees properties of programs such as totality and termi-
nation; and supports optimising program transformations such as fold fusion
and short cut fusion. Categorically, iteration operators arise from initial algebra
semantics of data types, in which each data type is regarded as the carrier of
the initial algebra of a functor F . Lambek’s Lemma ensures that this carrier is
the least fixed point µF of F , and initiality ensures that, given any F -algebra
h : FA → A, there is a unique F -algebra homomorphism, denoted fold h, from
the initial algebra in : F (µF ) → µF to that algebra. For each functor F , the
map fold : (FA → A) → µF → A is the iteration operator for the data type µF .
Initial algebra semantics thus provides a well-developed theory of iteration which
is i) principled, and so helps ensure that programs have rigorous mathematical
foundations that can be used to ascertain their meaning and correctness; ii) ex-
pressive, and so is applicable to all inductive types, rather than just syntactically
defined classes of data types such as polynomial data types; and iii) correct, and
so is valid in any model — set-theoretic, domain-theoretic, realisability, etc. —
in which data types are interpreted as carriers of initial algebras.
� This research is partially supported by EPSRC grant EP/C0608917/1.



Because induction and iteration are closely linked we may reasonably expect
that initial algebra semantics can be used to derive a principled, expressive,
and correct theory of induction for data types we well. In most treatments of
induction, given a functor F together with a property P to be proved about data
of type µF , the premises of the induction rule for µF constitute an F -algebra
with carrier Σx : µF. Px. The conclusion of the rule is obtained by supplying
such an F -algebra as input to the fold for µF . This yields a function from µF
to Σx : µF. Px from which function of type ∀x : µF. Px can be obtained. It has
not, however, been possible to characterise F -algebras with carrier Σx : µF. Px
without additional assumptions on F . Induction rules are thus typically derived
under the assumption that the functors involved have a certain structure, e.g.,
that they are polynomial. Moreover, taking the carriers of the algebras to be
Σ-types assumes that properties are represented as type-valued functions. So
while induction rules derived as described are both principled and correct, their
expressiveness is limited along two dimensions: with respect to the data types
for which they can be derived and the nature of the properties they can verify.

One principled and correct approach to induction is given by Hermida and
Jacobs [6]. They lift each functor F on a base category of types to a functor
F̂ on a category of properties over those types, and take the premises of the
induction rule for the type µF to be an F̂ -algebra. Hermida and Jacobs work in
a fibrational setting and the notion of property they consider is, accordingly, very
general. Indeed, they accommodate any notion of property that can be fibred
over the category of types, and so overcome one of the two limitations mentioned
above. On the other hand, their approach is only applicable to polynomial data
types, so the limitation on the class of data types treated remains in their work.

This paper shows how to remove the restriction on the class of data types
treated. Our main result is a derivation of a generic induction rule that can be
instantiated to every inductive type — i.e., to every type which is the carrier of
the initial algebra of a functor — regardless of whether it is polynomial. We take
Hermida and Jacobs’ approach as our point of departure and show that, under
slightly different assumptions on the fibration involved, we can lift any functor
on its base category that has an initial algebra to a functor on its properties. This
is clearly an important theoretical result, but it also has practical consequences:

– We show in Example 2 how our generic induction rule can be instantiated
to the codomain fibration to derive the rule for rose trees that one would
intuitively expect. The data type of rose trees lies outside the scope of Her-
mida and Jacobs’ results because it is not polynomial. On the other hand, an
induction rule for rose trees is available in the proof assistant Coq, although
it is neither the one we intuitively expect nor expressive enough to prove
properties that ought to be amenable to inductive proof. The rule we derive
for rose trees is indeed the expected one, which suggests that our deriva-
tion may enable automatic generation of more useful induction rules in Coq,
rather than requiring the user to hand code them as is currently necessary.

– We further show in Example 3 how our generic induction rule can be instan-
tiated, again to the codomain fibration, to derive a rule for the data type of



finite hereditary sets. This data type is defined in terms of quotients and so
lies outside current theories of induction.

– Finally, we show in Example 4 how our generic induction rule can be instan-
tiated to the subobject fibration over ωcpo to derive a rule for the data type
of hyperfunctions. Because this data type cannot be interpreted as a set, a
fibration other than the codomain fibration over Set is required; in this case,
use of the subobject fibration allows us to derive an induction rule for admis-
sible subsets of hyperfunctions. Moreover, the functor underlying the data
type of hyperfunctions is not strictly positive, and this fact again underscores
the advantage of being able to handle a very general class of functors. As
far as we know, induction rules for finite hereditary sets and hyperfunctions
have not previously existed in the general fibrational framework.

Although our theory of induction is applicable to all functors having initial
algebras, including higher-order ones, our examples show that working in the
general fibrational setting is beneficial even if attention is restricted to first-
order functors. Note also that our induction rules coincide with those of Hermida
and Jacobs when specialised to polynomial functors in the codomain fibration.
But the structure we require of fibrations generally is slightly different from that
required by Hermida and Jacobs, so while our theory is in essence a generalisation
of theirs, the two are, strictly speaking, incomparable. The structure we require
is, however, still minimal and certainly present in all standard fibrational models
of type theory (see Section 4). Like Hermida and Jacobs, we prove our generic
induction rule correct by reducing induction to iteration.

We take a purely categorical approach to induction in this paper, and derive
our generic induction rule from only the initial algebra semantics of data types.
As a result, our work is inherently extensional. While translating our construc-
tions into intensional settings may therefore require additional effort, we expect
the guidance offered by the categorical viewpoint to support the derivation of
induction rules for functors that are not treatable at present. Since we do not use
any form of impredicativity in our constructions, and instead use only the weaker
assumption that initial algebras exist, this guidance will be widely applicable.

The remainder of this paper is structured as follows. To make our results as
accessible as possible, we illustrate them in Section 2 with a categorical derivation
of the familiar induction rule for the natural numbers. In Section 3 we derive
an induction rule for the special case of the codomain fibration over Set, i.e.,
for functors on the category of sets and properties representable as set-valued
predicates. We also show how this rule can be instantiated to derive the one
from Section 2, and the ones for rose trees and finite hereditary sets mentioned
above. Then, in Section 4 we sketch the general fibrational form of our derivation
(space constraints prevent a full treatment) and illustrate the resulting generic
induction rule with the aforementioned application to hyperfunctions. Section 5
concludes and offers some additional directions for future research.

When convenient, we identify isomorphic objects of a category and write =
rather than �. We write 1 for the canonical singleton set and denote its single
element by · . In Sections 2 and 3 we assume that types are interpreted as objects
in the category Set of sets, and so 1 also denotes the unit type in those sections.



2 A Familiar Induction Rule

Consider the inductive data type Nat , which defines the natural numbers and
can be specified in a programming language with Haskell-like syntax by

data Nat = Zero | Succ Nat

The observation that Nat is the least fixed point of the functor N on Set defined
by NX = 1 + X can be used to define the following iteration operator for it:

foldNat = X → (X → X) → Nat → X
foldNat z sZero = z
foldNat z s (Succ n) = s (foldNat z s n)

Categorically, iteration operators such as foldNat arise from the initial alge-
bra semantics of data types. If B is a category and F is a functor on B, then an
F -algebra is a morphism h : FX → X for some object X of B. We call X the car-
rier of h. For any functor F , the collection of F -algebras itself forms a category
AlgF which we call the category of F -algebras. In AlgF , an F -algebra morphism
between F -algebras h : FX → X and g : FY → Y is a map f : X → Y such
that f ◦ h = g ◦ Ff . When it exists, the initial F -algebra in : F (µF ) → µF is
unique up to isomorphism and has the least fixed point µF of F as its carrier.
Initiality ensures that there is a unique F -algebra morphism fold h : µF → X
from in to any other F -algebra h : FX → X. This gives rise to the following
iteration operator fold for F or, equivalently, for the inductive type µF :

fold : (FX → X) → µF → X
fold h (in t) = h (F (fold h) t)

Since fold is derived from initial algebra semantics it is principled and correct.
It is also expressive, since it can be defined for every inductive type. In fact, fold
is a single iteration operator parameterised over inductive types rather than a
family of iteration operators, one for each such type, and the iteration operator
foldNat above is the instantiation to Nat of the generic iteration operator fold .

The iteration operator foldNat can be used to derive the standard induction
rule for Nat . This rule says that if a property P holds for 0, and if P holds for n+1
whenever it holds for a natural number n, then P holds for all natural numbers.
Representing each property of natural numbers as a predicate P : Nat → Set
mapping each n : Nat to the set of proofs that P holds for n, we wish to represent
this rule at the object level as a function indNat with type

∀(P : Nat → Set). P Zero → (∀n : Nat . P n → P (Succ n)) → (∀n : Nat . P n)

Code fragments such as the above, which involve quantification over sets, prop-
erties, or functors, are to be treated as “categorically inspired” within this paper.
This is because quantification over such higher-kinded objects cannot be inter-
preted in Set. In order to give a formal interpretation to code fragments like the
one above, we would need to work in a category such as that of modest sets.
The ability to work with functors over categories other than Set is one of the



motivations for working in the general fibrational setting of Section 4. Of course,
the use of category theory to suggest computational constructions has long been
accepted within the functional programming community (see, e.g., [1, 2, 13]).

A function indNat with the above type takes as input the property P to be
proved, a proof φ that P holds for Zero, and a function ψ mapping each n : Nat
and each proof that P holds for n to a proof that P holds for Succ n, and returns
a function mapping each n : Nat to a proof that P holds for n. We can write
indNat in terms of foldNat — and thus reduce induction for Nat to iteration for
Nat — as follows. First note that indNat cannot be obtained by instantiating the
type X in the type of foldNat to a type of the form Pn for a specific n because
indNat returns elements of the types P n for different values n and these types
are, in general, distinct from one another. We therefore need a type containing
all of the elements of P n for every n. Such a type can be formally given by the
dependent type Σn : Nat . P n comprising pairs (n, p) where n : Nat and p : P n.

The standard approach to defining indNat is thus to apply foldNat to an
N -algebra with carrier Σn : Nat . P n. Such an algebra has components α :
Σn : Nat. P n and β : Σn : Nat. P n → Σn : Nat. P n. Given φ : P Zero
and ψ : ∀n. P n → P (Succ n), we choose α = (Zero, φ) and β (n, p) =
(Succ n, ψ n p) and note that foldNat α β : Nat → Σn : Nat. P n. We tentatively
take indNat P φ ψ n to be p, where foldNat α β n = (m, p). But in order to
know that p actually gives a proof for n itself, we must show that m = n.
Fortunately, this follows easily from the uniqueness of foldNat α β. Letting π�P
be the second projection on dependent pairs, the induction rule for Nat is

indNat : ∀(P : Nat → Set). P Zero → (∀n : Nat . P n → P (Succ n))
→ (∀n : Nat . P n)

indNat P φ ψ = π�P ◦ (foldNat (Zero, φ) (λ(n, p).Succ n, ψ n p))

The use of dependent types is fundamental to this formalization of the in-
duction rule for Nat , but this is only possible because properties are taken to be
set-valued functions. The remainder of this paper uses fibrations to generalise the
above treatment of induction to arbitrary functors which have initial algebras
and arbitrary properties which are fibred over the category whose objects inter-
pret types. In the general fibrational setting, properties are given axiomatically
via the fibrational structure rather than assumed to be (set-valued) functions.

3 Induction rules over Set
The main result of this paper is the derivation of an induction rule that is generic
over inductive types and can be used to verify any notion of property that is
fibred over the category whose objects interpret types. In the remainder of the
paper we restrict attention to functors that have initial algebras. In this section
we further assume that types are modelled by sets, so the functors we consider
are on Set and the properties we consider are functions mapping data to sets of
proofs that these properties hold for them. We make these assumptions to present
our derivation in the simplest setting possible. But they are not always valid,
so we derive a more general induction rule which relaxes them in Section 4. It
should be more easily digestible once the derivation in this section is understood.



The derivation for Nat in Section 2 suggests that an induction rule for an
inductive data type µF should, in general, look something like this:

ind : ∀P : µ F → Set. ??? → ∀x : µF. P x

But what should the premises — denoted ??? here — of the generic induction
rule ind be? Since we want to construct, for any term x : µF , a proof term of
type P x from proof terms for x’s substructures, and since the functionality of
the fold operator for µF is precisely to compute a value for x : µF from the
values for x’s substructures, it is natural to try to equip P with an F -algebra
structure that can be input to fold to yield a mapping of each x : µF to an
element of P x. But this approach quickly hits a snag. Since the codomain of
every predicate P : µF → Set is Set itself, rather than an object of Set, F cannot
be applied to P as is needed to equip P with an F -algebra structure. Moreover,
an induction rule for µF cannot be obtained by applying fold to an F -algebra
with carrier P x for any specific x.

Such considerations led Hermida and Jacobs [6] to define a category of pred-
icates P and a lifting F̂ for every polynomial functor F on Set to a functor F̂
on P that respects the structure of F . They then constructed F̂ -algebras with
carrier P to serve as the premises of their induction rules. Their construction is
very general: they consider functors on bicartesian categories rather than just
on Set, and represent properties by bicartesian fibrations over such categories
instead of using the specific notion of predicate from Definition 2 below. On the
other hand, they define liftings for polynomial functors only. In this section we
focus exclusively on functors on Set and a particular category of predicates, and
show how to define a lifting for all functors on Set, including non-polynomial
ones. In this setting our results properly extend those of Hermida and Jacobs,
thus catering for a variety of data types that they cannot treat.

Definition 1 Let X be a set. A predicate on X is a pair (X,P ) where P : X →
Set maps each x ∈ X to a set P x. We call X the domain of the predicate (X,P ).

Definition 2 The category of predicates P has predicates as its objects. A mor-
phism from a predicate (X,P ) to a predicate (X �, P �) is a pair (f, f∼) : (X,P ) →
(X �, P �) of functions, where f : X → X � and f∼ : ∀x : X.P x → P �(f x).

The notion of a morphism from (X,P ) to (X �, P �) does not require the sets of
proofs P x and P � (f x), for any x ∈ X, to be equal. Instead, it requires only
the existence of a function f∼ which maps, for each x, each proof in P x to a
proof in P � (f x). We denote by U : P → Set the forgetful functor mapping each
predicate (X,P ) to its domain X and each predicate morphism (f, f∼) to f .

An alternative to Definition 2 would take the category of predicates to be the
arrow category over Set, but the natural lifting in this setting does not generalise
to arbitrary fibrations. Indeed, if properties are modelled as functions, then every
functor can be applied to a property, and hence every functor can be its own
lifting. In the general fibrational setting, properties are not necessarily modelled
by functions, so a functor cannot, in general, be its own lifting. The decision not



to use arrow categories to model properties is thus dictated by our desire to lift
functors in such a way that it can be extended to the general fibrational setting.

Definition 3 Let F be a functor on Set. A lifting of F from Set to P is a
functor F̂ on P such that FU = UF̂ .

Note that if P is a predicate on X, then F̂P is a predicate on FX. We can now
derive the standard induction rule from Section 2 for Nat as follows.

Example 1 The data type of natural numbers is µN where N is the functor on
Set defined by N X = 1+X. If P is a predicate on X, then a lifting N̂P : 1+X →
Set of N from Set to P is given by N̂P (inl ·) = 1 and N̂P (inr n) = P n. An
N̂ -algebra with carrier P : Nat → Set can be given by in : 1 + Nat → Nat and
in∼ : ∀t : 1+Nat . N̂P t → P (in t). Since in (inl ·) = 0 and in (inr n) = n+1, we
see that in∼ is an element h1 : P 0 and a function h2 : ∀n : Nat . P n → P (n+1).
Thus, the second component in∼ of the N̂ -algebra with carrier P : Nat → Set and
first component in gives the premises of the familiar induction rule in Example 1.

The notion of predicate comprehension is a key ingredient of our lifting.

Definition 4 Let P be a predicate on X. The comprehension of P , denoted {P},
is the type Σx : X.P x comprising pairs (x, p) where x : X and p : Px. The map
taking each predicate P to {P}, and taking each predicate morphism (f, f∼) :
P → P � to {(f, f∼)} : {P} → {P �} defined by {(f, f∼)}(x, p) = (fx, f∼x p),
defines the comprehension functor {−} from P to Set.

Definition 5 If F is a functor on Set, then the lifting F̂ is the functor on P
given as follows. For every predicate P on X, F̂ P : F X → Set is defined by
F̂ P = (F πP )−1, where the natural transformation π : {−} → U is given by
πP (x, p) = x. For every predicate morphism f : P → P �, F̂ f = (k, k∼) where
k = F (Uf), and k∼ : ∀y : FX. F̂P y → F̂P � (k y) is given by k∼ y z = F{f}z.

The inverse image f−1 of f : X → Y is a predicate P : Y → Set. Thus if P is a
predicate on X, then F̂P is a predicate on FX, so F̂ is a lifting of F from Set to
P. The lifting F̂ captures an “all” modality generalising Haskell’s all function
on lists to arbitrary data types. A similar modality is given in [12] for indexed
containers.

The lifting in Example 1 is the instantiation of the construction in Definition 5
to NX = 1+X on Set. Indeed, if P is any predicate, then N̂ P = (N πP )−1, i.e.,
N̂ P = (id + πP )−1, by Definition 5. Since the inverse image of the coproduct
of functions is the coproduct of their inverse images, since id−1 1 = 1, and since
π−1

P n = {(n, p) | p : Pn} for all n, we have N̂ P (inl ·) = 1 and N̂ P (inr n) = P n.
The rest of this section shows that F -algebras with carrier {P} are inter-

derivable with F̂ -algebras with carrier P , and then uses this result to derive our
induction rule.

Definition 6 The functor K1 : Set → P maps each set X to the predicate
K1X = λx : X. 1 and each f : X → Y to the predicate morphism (f, λx : X. id).



The predicate K1X is called the truth predicate on X. For every x : X, the set
K1Xx of proofs that K1X holds for x is a singleton, and thus is non-empty. For
any functor F , the lifting F̂ maps the truth predicate on a set X to that on FX.

Lemma 1 For any functor F on Set and any X : Set, F̂ (K1X) = K1(FX).

Proof: By Definition 5, F̂ (K1X) = (FπK1X)−1. We have that πK1X is a iso-
morphism since there is only one proof of K1X for each x : X, and thus that
F πK1X is an isomorphism as well. As a result, (F πK1X)−1 maps every y : FX to
a singleton set, and therefore F̂ (K1X) = (FπK1X)−1 = λy : FX. 1 = K1(FX).

The fact that K1 � {−} is critical to the constructions below. This is proved
in [6]; we include its proof here for completeness and to establish notation. The
description of comprehension as a right adjoint can be traced back to Law-
vere [10].

Lemma 2 K1 is left adjoint to {−}.

Proof: We must show that, for any predicate P and any set Y , the set P(K1Y, P )
of morphisms from K1Y to P in P is in bijective correspondence with the set
Set(Y, {P}) of morphisms from Y to {P}. Define maps (−)† : Set(Y, {P}) →
P(K1Y, P ) and (−)# : P(K1Y, P ) → Set(Y, {P}) by h† = (h1, h2) where hy =
(v, p), h1y = v and h2y = p, and (k, k∼)# = λ(y : Y ). (ky, k∼y). These give a
natural isomorphism between Set(Y, {P}) and P(K1Y, P ).

Naturality of (−)† ensures that (g ◦ f)† = g† ◦K1f for all f : Y � → Y and
g : Y → {P}. Similarly for (−)#. Moreover, id† is the counit of the adjunction
between K1 and {−}. These observations are used in the proof of Lemma 4.

Lemma 3 There is a functor Φ : AlgF → Alg F̂ such that if k : FX → X, then
Φk : F̂ (K1X) → K1X.

Proof: For an F -algebra k : FX → X define Φk = K1k, and for two F -algebras
k : FX → X and k� : FX � → X � and an F -algebra morphism h : X → X �

between them define the F̂ -algebra morphism Φh : Φk → Φk� by Φh = K1h.
Then K1(FX) = F̂ (K1X) by Lemma 1, so that Φk is an F̂ -algebra and K1h is an
F̂ -algebra morphism. It is easy to see that Φ preserves identities and composition.

Lemma 4 The functor Φ has a right adjoint Ψ such that if j : F̂P → P , then
Ψj : F{P}→ {P}.

Proof: We construct Ψ : Alg F̂ → AlgF as follows. Given an F̂ -algebra j : F̂P →
P , we use the fact that F̂ (K1{P}) = K1(F{P}) by Lemma 1 to define Ψj :
F{P} → {P} by Ψj = (j ◦ F̂ id†)†. To specify the action of Ψ on an F̂ -algebra
morphism h, define Ψh = {h}. Clearly Ψ preserves identity and composition.

Next we show Φ � Ψ , i.e., for every F -algebra k : FX → X and F̂ -algebra
j : F̂P → P with P a predicate on X, there is a natural isomorphism between
F -algebra morphisms from k to Ψj and F̂ -algebra morphisms from Φk to j. First



observe that an F -algebra morphism from k to Ψj is a map from X to {P}, and
an F̂ -algebra morphism from Φk to j is a map from K1X to P . An isomorphism
between such maps is given by the adjunction K1 � {−} from Lemma 2, and so
is natural. We must check that f : X → {P} is an F -algebra morphism from k
to Ψj iff f† : K1X → P is an F̂ -algebra morphism from Φk to j.

So assume f : X → {P} is an F -algebra morphism from k to Ψj, i.e.,
f ◦ k = Ψj ◦ Ff . We must prove that f† ◦ Φk = j ◦ F̂ f†. By the definition of
Φ in Lemma 3, thus amounts to showing f† ◦K1k = j ◦ F̂ f†. Since (−)† is an
isomorphism, f is an F -algebra morphism iff (f ◦ k)† = (Ψj ◦ Ff)†. Naturality
of (−)† ensures that (f ◦ k)† = f† ◦K1k and that (Ψj ◦Ff)† = (Ψj)† ◦K1(Ff),
so the previous equality holds iff f† ◦K1k = (Ψj)† ◦K1(Ff). But

j ◦ F̂ f†

= j ◦ F̂ (id† ◦K1f) by naturality of (−)† and f = id ◦ f
= (j ◦ F̂ id†) ◦ F̂ (K1f) by the functoriality of F̂
= (Ψj)† ◦K1(Ff) by the definition of Ψ, the fact that (−)† and (−)#

are inverses, and Lemma 1
= f∗ ◦K1k by the observation immediately preceding this proof
= f† ◦ Φk by the definition of Φ

So f† ◦K1k = (Ψj)† ◦K1(Ff), and f† is an F̂ -algebra morphism from Φk to j.

Lemma 4 ensures that F -algebras with carrier {P} are interderivable with F̂ -
algebras with carrier P . For example, the N -algebra [α,β] with carrier {P} from
Section 2 can be derived from the N̂ -algebra with carrier P given in Example 1.
Since we define a lifting F̂ for any functor F , Lemma 4 thus shows how to
construct F -algebras with carrier Σx : µF. Px for any F .

We can now derive our generic induction rule. For every predicate P on X
and every F̂ -algebra (k, k∼) : F̂P → P , Lemma 4 ensures that Ψ constructs from
(k, k∼) an F -algebra with carrier {P}. Thus, fold (Ψ (k, k∼)) : µF → {P} and
this map decomposes into two parts: φ = πP ◦ fold (Ψ (k, k∼)) : µF → X and
ψ : ∀(t : µF ). P (φ t). Initiality of in ensures φ = fold k. This gives the following
generic induction rule for the type X, which reduces induction to iteration:

genind : ∀ (F : Set → Set) (P : X → Set) ((k, k∼) : (F̂P → P )) (x : µF ).
P (fold k x)

genind F P = π�P ◦ fold ◦ Ψ

When X = µF and k = in, initiality of in further ensures that φ = fold in = id,
and thus that genind specialises to the expected induction rule for an inductive
data type µF :

ind : ∀ (F : Set → Set) (P : µF → Set) ((k, k∼) : (F̂P → P )).
(k = in) → ∀(x : µF ). P x

ind F P = π�P ◦ fold ◦ Ψ



This rule can be instantiated to familiar rules for polynomial data types, as well
as to ones we would expect for data types such as rose trees and finite hereditary
sets, both of which lie outside the scope of standard methods.

Example 2 The data type of rose trees is given in Haskell-like syntax by

data Rose = Node(Int ,List Rose)

The functor underlying Rose is FX = Int × List X and its induction rule is

indRose : ∀ (P : Rose → Set) ((k, k∼) : (F̂P → P )).
(k = in) → ∀(x : Rose). P x

indRose F P = π�P ◦ fold ◦ Ψ

Calculating F̂P = (FπP )−1 : F Rose → Set, and writing xs !! k for the kth

component of a list xs, we have that

F̂ P (i, rs)
= {z : F{P} | Fπpz = (i, rs)}
= {(j, cps) : Int × List {P} | FπP (j, cps) = (i, rs)}
= {(j, cps) : Int × List {P} | (id × List πP )(j, cps) = (i, rs)}
= {(j, cps) : Int × List {P} | j = i and List πP cps = rs}
= {(j, cps) : Int × List {P} | j = i and ∀k < length cps. πP (cps !! k) = rs !! k}

An F̂ -algebra whose underlying F -algebra is in : F Rose → Rose is thus a pair
of functions (in, k∼), where k∼ has type

∀i : Int . ∀rs : List Rose.
{(j, cps) : Int × List {P} | j = i and ∀k < length cps. πP (cps !! k) = rs !! k}
→ P (Node (i, rs))

= ∀i : Int . ∀rs : List Rose.
{cps : List {P} | ∀k < length cps. πP (cps !! k) = rs !! k} → P (Node (i, rs))

= ∀i : Int . ∀rs : List Rose. (∀k < length rs. P (rs !! k)) → P (Node (i, rs))

The last equality is due to surjective pairing for dependent products and the fact
that length cps = length rs. The type of k∼ gives the hypotheses of the induction
rule for rose trees.

Example 3 Hereditary sets are sets whose elements are themselves sets, and
so are the core data structures within set theory. The data type HS of finite
hereditary sets is µPf for the finite powerset functor Pf . If P : X → Set, then
PfπP : Pf (Σx : X.Px) → PfX maps each set {(x1, p1), . . . , (xn, pn)} to the set
{x1, . . . , xn}, so that (PfπP )−1 maps a set {x1, . . . , xn} to the set Px1 × . . . ×
Pxn. A P̂f -algebra with carrier P : HS → Set and first component in therefore
has as its second component a function of type

∀({s1, . . . , sn} : Pf (HS)). Ps1 × . . .× Psn → P (in{s1, . . . , sn})

The induction rule for finite hereditary sets is thus

indHS :: (∀({s1, . . . , sn} : Pf (HS)). Ps1 × . . .× Psn → P (in{s1, . . . , sn}))
→ ∀(s : HS).P s



4 Induction rules in the fibrational setting

We can treat a more general notion of predicate using fibrations. We motivate
the move from the codomain fibration to arbitrary fibrations by observing that
i) the semantics of data types in languages involving recursion and other effects
usually involves categories other than Set; ii) in such circumstances, the notion
of a predicate can no longer be taken as a function with codomain Set; iii)
even when working in Set there are reasonable notions of “predicate” other than
that in Section 3 (for example, a predicate on a set X could be a subobject
of X); and iv) when, in future work, we come to consider induction rules for
data types such as nested types, GADTs, indexed containers, and dependent
types (see Section 5), we will want to appropriately instantiate a general theory
of induction rather than having to invent a new one. Thus, although we could
develop an ad hoc theory for each choice of category, functor, and predicate, it is
far preferable to develop a uniform, axiomatic approach that is widely applicable.

Fibrations support precisely this kind of axiomatic approach, so this sec-
tion generalises the constructions of the previous one to the general fibrational
setting. The standard model of type theory based on locally cartesian closed
categories does arise as a specific fibration — namely, the codomain fibration
— but the general fibrational setting is far more flexible. In locally cartesian
closed models of type theory, predicates and types coexist in the same category,
so a functor can be taken to be its own lifting. In the general setting, predicates
are not simply functions or morphisms, properties and types do not coexist in
the same category, and a functor cannot be taken to be its own lifting. There
is no choice but to construct a lifting. Details about fibrations can be found in
standard references such as [8, 14].

Working in the general fibrational setting also facilitates a direct comparison
of our work with that of Hermida and Jacobs [6]. The main difference is that
they use fibred products and coproducts in defining their liftings, whereas we
use left adjoints to reindexing functors instead. The codomain fibration over Set
has both, so their derivation gives exactly the same induction rule as ours in the
setting of Section 3.

Let U : E → B be a fibration. Objects of the total category E can be thought
of as properties, objects of the base category B can be thought of as types, and
U can be thought of as mapping each property E in E to the type UE of which
E is a property. One fibration U can capture many different properties of the
same type, so U is not injective on objects. For any object B of B, we write EB

for the fibre above B, i.e., for the subcategory of E consisting of objects E such
that UE = B and morphisms k between objects of EB such that Uk = idB . Let
f§E be the cartesian morphism determined by f and E. Then f§E is unique up to
isomorphism for every choice of object E and morphism f with codomain UE.
If f : B → B� is a morphism in B, then the reindexing functor induced by f
is the functor f∗ : EB� → EB defined on objects by f∗E = dom(f§E) and, for a
morphism k : E → E� in EB� , f∗k is the morphism such that k ◦ f§E = f§E� ◦ f∗k.
The universal property of f§E� ensures the existence and uniqueness of f∗k.



Proceeding by analogy with the situation for Set-based predicates — where
Set plays the role of B and P plays the role of E — we now define, for every
functor F on B, a lifting F̂ of F to E such that UF̂ = FU . We construct F̂ by
generalising each aspect of the construction of Section 3 to the general setting.

• The Truth Functor To construct the truth functor in the general setting,
we assume B and E have terminal objects 1B and 1E , respectively, such that
U(1E) = 1B. Writing !B for the unique map from an object B of B to 1B, we
define K1 : B → E by setting K1B = (!B)∗1E and, for a morphism k : B → B�,
taking K1k to be the unique morphism guaranteed to exist by the universal
property of k§. Then, for every B in B, K1B is the terminal object of EB , so
U(K1B) = B. In fact, U � K1, and the unit of this adjunction is id , so UK1 = id .

• Comprehension Recall from Lemma 2 that the comprehension functor of
Section 3 is right adjoint to the truth functor. Since right adjoints are defined
up to isomorphism, in the general fibrational setting we can define the compre-
hension functor {−} to be the right adjoint to the truth functor K1. A fibration
U : E → B which has a right adjoint K1 which itself has a right adjoint {−} is
called a comprehension category [8]. We henceforth restrict attention to compre-
hension categories. We write � for the counit of the adjunction {−} � K1 and
so, for any object E of E , we have that �E : K1{E}→ E.

• Projection Recall from Section 3 that the first step of the construction
of our lifting is to define the projection πP mapping the comprehension of a
predicate P to P ’s domain UP . As in Section 3, we also want comprehension to
be a natural transformation, so we actually seek to construct π : {−} → U for
an arbitrary comprehension category. Since �E : K1{E}→ E for every object E
of E , we have that U�E : UK1{E} → UE. Because UK1 = id, defining U� by
(U�)E = U�E gives a natural transformation from {−} to U . We may therefore
define the projection in an arbitrary comprehension category by π = U�.

• Inverses The final step in defining F̂ is to turn each component FπE

of the natural transformation Fπ : F{−} → FU defined by (Fπ)E = FπE

into a predicate over FUE. In Section 3, this was done via an inverse image
construction. To generalise it, first note that we can construct a predicate invf
in EB� for any map f : B → B� in B if we assume a small amount of additional
standard fibrational structure, namely that for each such f the functor f∗ :
EB� → EB has a left adjoint. As in [6], no Beck-Chevalley condition is required
on this adjoint, which we denote Σf : EB → EB� . We define invf to be Σf (K1B).

• The Lifting Putting this all together, we now define the lifting F̂ : E → E
by F̂E = ΣFπE (K1(F{E})) for every object E of E . For completeness we
also give the action of F̂ on morphisms. For each k : E → E�, define F̂ k =
(FUk)§ αK1F{E�} ΣFπE γ(K1F{E}). Here, i) αK1F{E�} : ΣFπE(F{k})∗K1F{E�}
→ (FU{k})∗ΣFπE� K1F{E�} is the component for K1F{E�} of the natural trans-
formation from ΣFπE(F{k})∗ to (FU{k})∗ΣFπE� arising from the facts that
ΣFπE is the left adjoint of (FπE)∗ and that Fπ is a natural transformation,
and ii) γ : ΣFπE K1F{E}→ ΣFπE(F{k})∗K1F{E�} is the isomorphism arising
from the fact that (F{k})∗ is a right adjoint by the existence of ΣF{k} and hence
preserves terminal objects. It is trivial to check that F̂ is indeed a lifting.



• Generalising Lemma 1 As in Section 3, we ultimately want to show that F -
algebras with carrier {P} are interderivable with F̂ -algebras with carrier P . We
first show that, as in Lemma 1, F̂ (K1B) = K1(FB) for any functor F on B and
B in B. Recall that UK1 = id and define πK1 : {−}K1 → Id to be the natural
transformation with components (πK1)B = πK1B . Note that ((πK1)B)−1 =
UK1ηB , where η : Id → {−}K1 is the unit of the adjunction {−} � K1, so that
πK1 is a natural isomorphism. If we further define FπK1 : F{−}K1 → FUK1 to
be the natural transformation with components (FπK1)B = F ((πK1)B), then
FπK1 is also a natural isomorphism. We will use this observation below to show
that, for every object B of B, Σ(FπK1)B

is not only left adjoint by definition, but
also right adjoint, to ((FπK1)B)∗. Then, observing that right adjoints preserve
terminal objects and that K1(FB) is the terminal object of EFB (since K1B is
the terminal object of EB for any B), we will have shown that F̂ (K1B) — i.e.,
Σ(FπK1)B

(K1(F{K1B})) — must be the terminal object of EFU(K1B), i.e., of
EFB . In other words, we will have shown that F̂ (K1B) = K1(FB).

So, fix an object B of B. To see that Σ(FπK1)B
� ((FπK1)B)∗, first note

that, for any isomorphism f : B → B� in B, f∗ and (f−1)∗ both exist and both
f∗ � (f−1)∗ and (f−1)∗ � f∗ hold. Then, since f∗ � Σf by definition, we have
Σf is (f−1)∗, and thus that Σf � f∗. Instantiating f to (FπK1)B and recalling
that (FπK1)B is an isomorphism, we have that Σ(FπK1)B

� ((FπK1)B)∗.
• A Generic Fibrational Induction Rule Analogues of Lemma 3 and Lemma 4

hold in the general fibrational setting provided all occurrences of Set are replaced
by B and all occurrences of P are replaced by E and, in the analogue of Lemma 2,
(−)† : B(B, {E}) → E(K1B,E) and (−)# : E(K1B,E) → B(B, {E}) are defined
by the adjunction {−} � K1.

The above construction thus yields the following generalised induction rule:

genfibind : ∀ (F : B → B) (E : EX) (k : F̂E → E). µF → {E}
genfibind F E = fold ◦ Ψ

This induction rule looks slightly different from the one for set-valued predicates.
In Section 3, we were able to use the specific structure of comprehensions for set-
valued predicates to extract proofs for particular data elements from them. But
in the general fibrational setting, predicates, and hence comprehensions, are left
abstract, so we take the return type of the general induction scheme genfibind
to be a comprehension. We expect that, when genfibind is instantiated to a
fibration of interest, we should be able to use knowledge about that fibration to
extract from the comprehension it constructs further proof information relevant
to the application at hand. This expectation is justified, as in [6], by {−} � K1.

We now give an induction rule for a data type and properties that cannot be
modelled in Set.

Example 4 The fixed point Hyp = µF of the functor FX = (X → Int) → Int
is the data type of hyperfunctions. Since F has no fixed point in Set, we interpret
it in the category ωCPO⊥ of ω-cpos with ⊥ and strict continuous monotone
functions. In this setting, a property of an object X of ωCPO⊥ is an admissible



sub-ωCPO⊥ A of X. Admissibility means that the bottom element of X is in
A and A is closed under the least upper bounds of X. This structure forms a
Lawvere category [7, 8]. The truth functor maps X to X, and comprehension
maps a sub-ωCPO⊥ A of X to A. The lifting F̂ maps a sub-ωCPO⊥ A of X to
the sub-ωCPO⊥ FA of FX. Finally, the derived induction rule states that if A
is an admissible sub-ωCPO⊥ of Hyp, and if F̂ (A) ⊆ A, then A = Hyp.

5 Conclusion and future work
We give an induction rule that can be used to prove properties of data structures
of inductive types. Like Hermida and Jacobs, we give a fibrational account of
induction, but we derive, under slightly different assumptions on fibrations, a
generic induction rule that can be instantiated to any inductive type rather than
just to polynomial ones. This rule is based on initial algebra semantics of data
types, and is parameterised over both the data types and the properties involved.
It is also principled, expressive, and correct. Our derivation yields the same
induction rules as Hermida and Jacobs’ when specialised to polynomial functors
in the codomain fibration, but it also gives induction rules for non-polynomial
data types such as rose trees, and for data types such as finite hereditary sets
and hyperfunctions, for which no induction rules have previously been known.

There are several directions for future work. The most immediate is to instan-
tiate our theory to give induction rules for nested types. These are exemplified
by the data type of perfect trees given in Haskell-like syntax as follows:

data PTree a : Set where
PLeaf : a → PTree a
PNode : PTree (a, a) → PTree a

Nested types arise as least fixed points of rank-2 functors; for example, the type
of perfect trees is µH for the functor H given by HF = λX. X +F (X ×X). An
appropriate fibration for induction rules for nested types thus takes B to be the
category of functors on Set, E to be the category of functors from Set to P, and
U to be postcomposition with the forgetful functor from Section 3. A lifting Ĥ
of H is given by Ĥ P X (inl a) = 1 and Ĥ P X (inr n) = P (X×X) n. Taking the
premise to be an Ĥ-algebra gives the following induction rule for perfect trees:

indPTree : ∀ (P : Set → P).
(UP = PTree) → (∀(X : Set)(x : X). P (PLeaf x)) →
(∀(X : Set)(t : PTree (X ×X). P (X ×X) t → P (PNode t))) →

∀(X : Set)(t : PTree X). P X t

This rule can be used to show, for example, that PTree is a functor.
Extending the above instantiation for the codomain fibration to “truly nested

types” and fibrations is current work. We expect to be able to instantiate our
theory for truly nested types, GADTs, indexed containers, and dependent types,
but initial investigations show care is needed. We must ascertain which fibra-
tions can model predicates on such types, since the codomain fibration may not



give useful induction rules, as well as how to translate the rules to which these
fibrations give rise to an intensional setting.

Matthes [11] gives induction rules for nested types (including truly nested
ones) in an intensional type theory. He handles only rank-2 functors that underlie
nested types (while we handle any functor of any rank with an initial algebra),
but his insights may help guide choices of fibrations for truly nested types. These
may in turn inform choices for GADTs, indexed containers, and dependent types.

Induction rules can automatically be generated in many type theories. Within
the Calculus of Constructions [3] an induction rule for a data type can be gen-
erated solely from the inductive structure of that type. Such generation is also
a key idea in the Coq proof assistant [4]. But as far as we know, generation
can currently be done only for syntactic classes of functors rather than for all
functors with initial algebras. In some type theories induction schemes are added
as axioms rather than generated. For example, attempts to generate induction
schemes based on Church encodings in the Calculus of Constructions proved un-
successful and so initiality was added to the system, thus giving the Calculus of
Inductive Constructions. Whereas Matthes’ work is based on concepts such as
impredicativity and induction recursion rather than initial algebras, ours reduces
induction to initiality, and may therefore help lay the groundwork for extending
implementations of induction to more sophisticated data types.

References

1. R. S. Bird and O. De Moor. Algebra of Programming. International Series in Com-
puting Science, volume 100. Prentice Hall, 1997.

2. R. Bird and L. Meertens. Nested Datatypes. Proceedings, Mathematics of Program
Construction, pp. 52–67, 1998.

3. T. Coquand and G. Huet. The Calculus of Constructions. Information and Compu-
tation 76 (2-3), pp. 95–120, 1988.

4. The Coq Proof Assistant. Available at coq.inria.fr
5. N. Ghani and P. Johann. Foundations for Structured Programming with GADTs.

Proceedings, Principles of Programming Languages, pp. 297–308, 2008.
6. C. Hermida and B. Jacobs. Structural Induction and Coinduction in a Fibrational

Setting. Information and Computation 145 (2), pp. 107–152, 1998.
7. B. Jacobs. Comprehension Categories and the Semantics of Type Dependency. The-

oretical Computer Science 107, pp. 169–207, 1993.
8. B. Jacobs. Categorical Logic and Type Theory. North Holland, 1999.
9. P. Johann and N. Ghani. Initial Algebra Semantics is Enough! Proceedings, Typed

Lambda Calculus and Applications, pp. 207–222, 2007.
10. F. W. Lawvere. Equality in Hyperdoctrines and Comprehension Scheme as an

Adjoint Functor. Applications of Categorical Algebra, pp. 1–14, 1970.
11. R. Matthes. An Induction Principle for Nested Datatypes in Intensional Type

Theory. Journal of Functional Programming 19 (3&4), pp. 439–468, 2009.
12. P. Morris. Constructing Universes for Generic Programming. Dissertation, Univer-

sity of Nottingham, 2007.
13. E. Moggi. Notations of Computation and Monads. Information and Computation

93 (1), pp. 55–92, 1991.
14. D. Pavlovic. Predicates and Fibrations. Dissertation, University of Utrecht, 1990.


