Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Fibrational induction rules for initial algebras

Ghani, Neil and Johann, Patricia and Fumex, Clement (2010) Fibrational induction rules for initial algebras. In: Computer Science Logic. Lecture Notes In Computer Science, 6247 . Springer, pp. 336-350. ISBN 978-3-642-15204-7

[img]
Preview
PDF
ghani_csl10.pdf - Preprint

Download (293kB) | Preview

Abstract

This paper provides an induction rule that can be used to prove properties of data structures whose types are inductive, i.e., are carriers of initial algebras of functors. Our results are semantic in nature and are inspired by Hermida and Jacobs’ elegant algebraic formulation of induction for polynomial data types. Our contribution is to derive, under slightly different assumptions, an induction rule that is generic over all inductive types, polynomial or not. Our induction rule is generic over the kinds of properties to be proved as well: like Hermida and Jacobs, we work in a general fibrational setting and so can accommodate very general notions of properties on inductive types rather than just those of particular syntactic forms. We establish the correctness of our generic induction rule by reducing induction to iteration. We show how our rule can be instantiated to give induction rules for the data types of rose trees, finite hereditary sets, and hyperfunctions. The former lies outside the scope of Hermida and Jacobs’ work because it is not polynomial; as far as we are aware, no induction rules have been known to exist for the latter two in a general fibrational framework. Our instantiation for hyperfunctions underscores the value of working in the general fibrational setting since this data type cannot be interpreted as a set.