Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Precise control of the assembly of dye-coded oligonucleotide silver nanoparticle conjugates with single base mismatch discrimination using surface enhanced resonance raman scattering

Thompson, David G. and Faulds, Karen and Smith, W. Ewen and Graham, Duncan (2010) Precise control of the assembly of dye-coded oligonucleotide silver nanoparticle conjugates with single base mismatch discrimination using surface enhanced resonance raman scattering. Journal of Physical Chemistry C, 114 (16). pp. 7384-7389.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The control of the assembly of nanostructures of dye-coded oligonucleotide silver nanoparticle (DOSN) conjugates (silver nanoparticles cofunctionalized with thiol modified DNA and a Raman reporter molecule) in a sandwich assay format with single base discrimination in an unmodified target oligonucleotide is reported. Rational placement of a single base mismatch in the 18 base duplex formed between target and DOSN conjugates completely controls the hybridization event, preventing or allowing nanostructure formation. The assembly process was monitored using UV-vis spectrometry and surface-enhanced resonance Raman scattering (SERRS). These two supporting analysis techniques show that there is an initial formation of small, highly SERRS active assemblies followed by the formation of larger superaggregates. The rapid increase in SERRS intensity obtained from DOSN conjugate hybridization has been utilized for the near-immediate discrimination of a single base mismatch using SERRS. This report highlights the exquisite control and detection possibilities offered by coupling specific molecular recognition events, such as DNA hybridization, with the optical and SERRS responses possible by nanoparticle assembly.