Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Quantitative detection of human tumor necrosis factor alpha by a resonance raman enzyme-linked immunosorbent assay

Laing, Stacey and Hernandez-Santana, Aaron and Sassmannshausen, Joerg and Asquith, Darren L. and McInnes, Iain B. and Faulds, Karen and Graham, Duncan (2011) Quantitative detection of human tumor necrosis factor alpha by a resonance raman enzyme-linked immunosorbent assay. Analytical Chemistry, 83 (1). pp. 297-302. ISSN 0003-2700

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Tumor necrosis factor a is an inflammatory cytokine which has been linked with many infectious and inflammatory diseases. Detection and quantification of this key biomarker is commonly achieved by use of an enzyme-linked immunosorbent assay (ELISA). This fundamental technique uses the spectroscopic detection of a chromogen such as 3,3',5,5'-tetramethylbenzidine (TMB). Horseradish peroxidase (HRP), bound to the detection antibody, catalyzes the oxidation of TMB by hydrogen peroxide to generate colored products which may be measured spectrophotometrically. In this study we have used a conventional ELISA kit and shown that, by replacing the traditional colorimetric detection with resonance Raman spectroscopy, we can achieve 50 times lower detection limits and the potential for multiplexed analysis is increased. In this approach, the laser wavelength was tuned to be in resonance with an electronic transition of the oxidized TMB. The relative intensity of the enhanced Raman bands is proportional to the amount of TMB, thus providing a means of improved quantification. Furthermore, TMB is one of the most widely used chromogenic substrates for HRP-based detection and commercial ELISA test kits, indicating that this detection technique is applicable to a large number of target analytes.

Item type: Article
ID code: 33659
Keywords: electrochemical oxidation, radical-cation, spectroscopy, immunoassay, serum, Physical and theoretical chemistry, Analytical Chemistry
Subjects: Science > Chemistry > Physical and theoretical chemistry
Department: Faculty of Science > Pure and Applied Chemistry
Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences
Related URLs:
Depositing user: Pure Administrator
Date Deposited: 17 Oct 2011 14:49
Last modified: 27 Mar 2014 09:35
URI: http://strathprints.strath.ac.uk/id/eprint/33659

Actions (login required)

View Item