Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Nanoparticles and inflammation

Stevenson, Ross and Hueber, Axel J. and Hutton, Alan and McInnes, Iain B. and Graham, Duncan (2011) Nanoparticles and inflammation. ScientificWorld Journal, 11. pp. 1300-1312. ISSN 1537-744X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The development of nanoscale molecular probes capable of diagnosis, characterization, and clinical treatment of disease is leading to a new generation of imaging technologies. Such probes are particularly relevant to inflammation, where the detection of subclinical, early disease states could facilitate speedier detection that could yield enhanced, tailored therapies. Nanoparticles offer robust platforms capable of sensitive detection, and early research has indicated their suitability for the detection of vascular activation and cellular recruitment at subclinical levels. This suggests that nanoparticle techniques may provide excellent biomarkers for the diagnosis and progression of inflammatory diseases with magnetic resonance imaging (MRI), fluorescent quantum dots (QDs), and surface enhanced Raman scattering (SERS) probes being just some of the new methodologies employed. Development of these techniques could lead to a range of sensitive probes capable of ultrasensitive, localized detection of inflammation. This article will discuss the merits of each approach, with a general overview to their applicability in inflammatory diseases.