Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Stable dye-labelled oligonucleotide-nanoparticle conjugates for nucleic acid detection

Barrett, Lee and Dougan, Jennifer A. and Faulds, Karen and Graham, Duncan (2011) Stable dye-labelled oligonucleotide-nanoparticle conjugates for nucleic acid detection. Nanoscale, 3 (8). pp. 3221-3227. ISSN 2040-3364

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Metallic nanoparticles functionalized with oligonucleotides are used for a number of nucleic acid detection strategies. However, oligonucleotide-nanoparticle conjugates suffer from a lack of stability when exposed to certain conditions associated with DNA detection assays. In this study, we report the synthesis of thiol and thioctic acid-modified oligonucleotide gold nanoparticle (OGNs) conjugates functionalized with a dye label and varying spacer groups. The thioctic acid-modified conjugates exhibit increased stability when treated with dithiothreitol (DTT) compared to the more commonly used thiol modification. When the dye labelled oligonucleotide nanoparticle conjugates are exposed to the same conditions there is a pronounced increase in the stability for both thioctic acid and thiol modified sequences. These results open up the possibility of simply using a dye label to enhance the stability of oligonucleotide-nanoparticle conjugates in DNA detection assays where the enhanced stability of the conjugate system can be advantageous in more complex biological environments.