Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Evidence for the shikimate pathway in apicomplexan parasites

Roberts, F and Roberts, C W and Johnson, J J and Kyle, D E and Krell, T and Coggins, J R and Coombs, G H and Milhous, W K and Tzipori, S and Ferguson, D J and Chakrabarti, D and McLeod, R (1998) Evidence for the shikimate pathway in apicomplexan parasites. Nature, 393 (6687). pp. 801-805. ISSN 0028-0836

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Parasites of the phylum Apicomplexa cause substantial morbidity, mortality and economic losses, and new medicines to treat them are needed urgently. The shikimate pathway is an attractive target for herbicides and antimicrobial agents because it is essential in algae, higher plants, bacteria and fungi, but absent from mammals. Here we present biochemical, genetic and chemotherapeutic evidence for the presence of enzymes of the shikimate pathway in apicomplexan parasites. In vitro growth of Toxoplasma gondii, Plasmodium falciparum (malaria) and Cryptosporidium parvum was inhibited by the herbicide glyphosate, a well-characterized inhibitor of the shikimate pathway enzyme 5-enolpyruvyl shikimate 3-phosphate synthase. This effect on T. gondii and P. falciparum was reversed by treatment with p-aminobenzoate, which suggests that the shikimate pathway supplies folate precursors for their growth. Glyphosate in combination with pyrimethamine limited T. gondii infection in mice. Four shikimate pathway enzymes were detected in extracts of T. gondii and glyphosate inhibited 5-enolpyruvyl shikimate 3-phosphate synthase activity. Genes encoding chorismate synthase, the final shikimate pathway enzyme, were cloned from T. gondii and P. falciparum. This discovery of a functional shikimate pathway in apicomplexan parasites provides several targets for the development of new antiparasite agents.