Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Evidence for the shikimate pathway in apicomplexan parasites

Roberts, F and Roberts, C W and Johnson, J J and Kyle, D E and Krell, T and Coggins, J R and Coombs, G H and Milhous, W K and Tzipori, S and Ferguson, D J and Chakrabarti, D and McLeod, R (1998) Evidence for the shikimate pathway in apicomplexan parasites. Nature, 393 (6687). pp. 801-805. ISSN 0028-0836

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Parasites of the phylum Apicomplexa cause substantial morbidity, mortality and economic losses, and new medicines to treat them are needed urgently. The shikimate pathway is an attractive target for herbicides and antimicrobial agents because it is essential in algae, higher plants, bacteria and fungi, but absent from mammals. Here we present biochemical, genetic and chemotherapeutic evidence for the presence of enzymes of the shikimate pathway in apicomplexan parasites. In vitro growth of Toxoplasma gondii, Plasmodium falciparum (malaria) and Cryptosporidium parvum was inhibited by the herbicide glyphosate, a well-characterized inhibitor of the shikimate pathway enzyme 5-enolpyruvyl shikimate 3-phosphate synthase. This effect on T. gondii and P. falciparum was reversed by treatment with p-aminobenzoate, which suggests that the shikimate pathway supplies folate precursors for their growth. Glyphosate in combination with pyrimethamine limited T. gondii infection in mice. Four shikimate pathway enzymes were detected in extracts of T. gondii and glyphosate inhibited 5-enolpyruvyl shikimate 3-phosphate synthase activity. Genes encoding chorismate synthase, the final shikimate pathway enzyme, were cloned from T. gondii and P. falciparum. This discovery of a functional shikimate pathway in apicomplexan parasites provides several targets for the development of new antiparasite agents.