Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Electrochemiluminescence (ECL) sensing properties of water soluble core-shell CdSe/ZnS quantum dots/Nafion composite films

Dennany, Lynn and Gerlach, Matthias and O'Carroll, Shane and Keyes, Tia E. and Forster, Robert J. and Bertoncello, Paolo (2011) Electrochemiluminescence (ECL) sensing properties of water soluble core-shell CdSe/ZnS quantum dots/Nafion composite films. Journal of Materials Chemistry, 21 (36). pp. 13984-13990. ISSN 0959-9428

[img]
Preview
PDF
c1jm12183a.pdf - Final Published Version

Download (456kB) | Preview

Abstract

Water soluble positively charged 2-(dimethylamino) ethanethiol (DAET)-protected core-shell CdSe/ZnS quantum dots (QDs) were synthesized and incorporated within negatively charged Nafion polymer films. The water soluble QDs were characterized using UV-visible and fluorescence spectroscopies. Nafion/QDs composite films were deposited on glassy carbon electrodes and characterized using cyclic voltammetry. The electrochemiluminescence (ECL) using hydrogen peroxide as co-reactant was enhanced for Nafion/QDs composite films compared to films of the bare QDs. Significantly, no ECL was observed for Nafion/QDs composite films when peroxydisulfate was used as the co-reactant, suggesting that the permselective properties of the Nafion effectively exclude the co-reactant. The ECL quenching by glutathione depends linearly on its concentration when hydrogen peroxide is used as the co-reactant, opening up the possibility to use Nafion/QDs composite films for various electroanalytical applications.