Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Design of optimal Earth pole-sitter transfers using low thrust propulsion

Heiligers, Jeannette and Ceriotti, Matteo and McInnes, Colin and Biggs, James (2011) Design of optimal Earth pole-sitter transfers using low thrust propulsion. In: 62nd International Astronautical Congress 2011, 2011-10-03 - 2011-10-07.

[img] PDF
McInnes_CR_et_al_Pure_Design_of_optimal_Earth_poll_sitter_transfers...propulsion_Oct_2011.pdf - Draft Version

Download (2MB)

Abstract

Recent studies have shown the feasibility of an Earth pole-sitter mission using low-thrust propulsion. This mission concept involves a spacecraft following the Earth's polar axis to have a continuous, hemispherical view of one of the Earth's poles. Such a view will enhance future Earth observation and telecommunications for high latitude and polar regions. To assess the accessibility of the pole-sitter orbit, this paper investigates optimum Earth pole-sitter transfers employing low-thrust propulsion. A launch from low Earth orbit (LEO) by a Soyuz Fregat upper stage is assumed after which a solar-electric-propulsion thruster transfers the spacecraft to the pole-sitter orbit. The objective is to minimise the mass in LEO for a given spacecraft mass to be inserted into the pole-sitter orbit. The results are compared with a ballistic transfer that exploits the manifolds winding off the pole-sitter orbit. It is shown that, with respect to the ballistic case, low-thrust propulsion can achieve significant mass savings in excess of 200 kg for a pole-sitter spacecraft of 1000 kg upon insertion. To finally obtain a full low-thrust transfer from LEO up to the pole-sitter orbit, the Fregat launch is replaced by a low-thrust, minimum time spiral through an orbital averaging technique, which provides further mass savings, but at the cost of an increased time of flight.