Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Morphological and biological characterization of density engineered foams fabricated by ultrasonic sonication

Torres-Sanchez, C. and Corney, J. R. (2011) Morphological and biological characterization of density engineered foams fabricated by ultrasonic sonication. Journal of Materials Science, 46 (2). pp. 490-499. ISSN 0022-2461

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The successful manufacture of functionally tailored materials (e.g., density engineered foams) for advanced applications (e.g., structures or in bioengineering) requires an effective control over the process variables. In order to achieve this, density gradation needs to be represented and quantified. Current density measurement techniques offer information on bulk values, but neglect local position as valuable information (i.e., do not associate density scalar values with specific location, which is frequently critical when mechanical properties or functionalities have to be engineered). In this article, we present a method that characterizes the density gradation of engineered foams manufactured by the sonication technique, which allows the generation of sophisticated porous architectures beyond a simple linear gradient. A 3D data capture (mu CT) and a flexible analysis software program (ImageJ) are used to obtain "global" density gradation values that can, ultimately, inform, control, and optimize the manufacture process. Polymeric foams, i.e., polyurethane (PU) foams, were used in this study as proof of concept. The measurements performed on the PU foams were validated by checking consistency in the results for both horizontal and vertical image slices. Biological characterization was done to assess the samples' tailored structure viability as scaffolds for tissue engineering. The comparison between untreated and sonicated samples yielded a 12.7% of increment in living cell count adhered to the walls after treatment. The conclusions drawn from this study may inform the design and manufacture of density-engineered materials used in other fields (e.g., structural materials, optoelectronics, food technology, etc.)

Item type: Article
ID code: 33594
Keywords: porous materials, scaffolds, ceramics, aluminium, porosity, design, Engineering design, Mechanics of Materials, Materials Science(all), Mechanical Engineering
Subjects: Technology > Engineering (General). Civil engineering (General) > Engineering design
Department: Faculty of Engineering > Design, Manufacture and Engineering Management
Related URLs:
Depositing user: Pure Administrator
Date Deposited: 23 Sep 2011 05:17
Last modified: 27 Mar 2014 09:34
URI: http://strathprints.strath.ac.uk/id/eprint/33594

Actions (login required)

View Item