Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

DNA nanofabrication by scanning near-field photolithography of oligo (ethylene glycol) terminated SAMs: Controlled scan-rate dependent switching between head group oxidation and tail group degradation

Sun, Shuqing and Thompson, David G. and Graham, Duncan and Leggett, Graham J. (2011) DNA nanofabrication by scanning near-field photolithography of oligo (ethylene glycol) terminated SAMs: Controlled scan-rate dependent switching between head group oxidation and tail group degradation. Journal of Materials Chemistry, 21 (37). pp. 14173-14177. ISSN 0959-9428

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The use of scanning near-field photolithography (SNP) to fabricate DNA nanostructures is described. Two different strategies were employed to generate nanoscale features in oligo(ethylene glycol) (OEG) terminated alkylthiolate self-assembled monolayers (SAMs) on gold. At long exposure times, complete photooxidation of the SAM molecules enabled their displacement by amino-terminated thiol molecules, which were subsequently used to attach ss-DNA molecules; while short exposure times resulted in partial photochemical conversion of the terminal OEG group of the adsorbate to an aldehyde group facilitating the direct attachment of amino-DNA molecules. Arrays of DNA functionalized metal-nanoparticles were then assembled onto the ss-DNA patches through specific DNA hybridization. This methodology provides a facile approach for the assembly of bio-functionalised nanoparticles onto nanofeatures embedded in an inert background and will prove useful in biosensing applications.