Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Demonstration of the angular uncertainty principle for single photons

Jack, B. and Aursand, P. and Franke-Arnold, S. and Ireland, D. G. and Leach, J. and Barnett, S.M. and Padgett, M. J. (2011) Demonstration of the angular uncertainty principle for single photons. Journal of Optics, 13 (6). -. ISSN 0972-8821

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We present an experimental demonstration of a form of the angular uncertainty principle for single photons. Producing light from type I down-conversion, we use spatial light modulators to perform measurements on signal and idler photons. By measuring states in the angle and orbital angular momentum basis, we demonstrate the uncertainty relation of Franke-Arnold et al (2004 New J. Phys. 6 103). We consider two manifestations of the uncertainty relation. In the first we herald the presence of a photon by detection of its paired partner and demonstrate the uncertainty relation on this single photon. In the second, we perform orbital angular momentum measurements on one photon and angular measurements on its correlated partner exploring, in this way, the uncertainty relation through non-local measurements.