Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Demonstration of the angular uncertainty principle for single photons

Jack, B. and Aursand, P. and Franke-Arnold, S. and Ireland, D. G. and Leach, J. and Barnett, S.M. and Padgett, M. J. (2011) Demonstration of the angular uncertainty principle for single photons. Journal of Optics, 13 (6). -. ISSN 0972-8821

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We present an experimental demonstration of a form of the angular uncertainty principle for single photons. Producing light from type I down-conversion, we use spatial light modulators to perform measurements on signal and idler photons. By measuring states in the angle and orbital angular momentum basis, we demonstrate the uncertainty relation of Franke-Arnold et al (2004 New J. Phys. 6 103). We consider two manifestations of the uncertainty relation. In the first we herald the presence of a photon by detection of its paired partner and demonstrate the uncertainty relation on this single photon. In the second, we perform orbital angular momentum measurements on one photon and angular measurements on its correlated partner exploring, in this way, the uncertainty relation through non-local measurements.