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Abstract. In special relativity the angular momentum is a rank-two antisymmetric
tensor with six independent components. Three of these are the familiar generators
of spatial rotation, which for light have been studied at length. The remaining three,
which are responsible for the Lorentz boosts, have largely been neglected. We introduce
the latter and compare their properties with those of the more familiar generators of
rotations. The seemingly natural separation of the generators of Lorentz boosts into
spin and orbital parts fails, however, as the spin part is identically zero.

Keywords: Optical angular momentum, Lorentz boosts



On the six components of optical angular momentum 2

1. Introduction

Optical angular momentum is rapidly becoming a mature field of research with a number

of books and review articles devoted to it [1, 2, 3]. The key idea was the observation

that a beam of light prepared in a Laguerre–Gaussian mode carries orbital angular

momentum about the beam axis [4]. This is in addition to the more familiar spin

angular momentum associated with circular polarization.

The angular momentum carried by a beam of light can exert a torque on a

trapped particle causing it to rotate [5, 6]. The spin and orbital parts of the optical

angular momentum cause a small particle to rotate about the centre of the particle

or the centre of the beam respectively [7]. In the quantum regime, the production of

pairs of photons in spontaneous parametric down-conversion conserves orbital angular

momentum leading to entanglement in this quantity [8, 9]. Most recently, this has been

used to demonstrate, experimentally, an EPR paradox based on the conjugate variables

angular momentum and angular position [10, 11].

The separation of optical angular momentum is straightforward only within the

paraxial regime and for the components parallel to the beam axis. Once we move

beyond this limit the separation into spin and orbital parts becomes more problematic

[12, 13, 14]. It is known that a separation into spin and orbital parts is possible beyond

the paraxial regime but that neither part alone is itself an angular momentum [15, 16].

The problem is the difficulty in performing a rotation whilst preserving the transversality

of the field. We can, however, identify the spin and orbital parts as the generators of

the closest allowed approximation to independent rotation of the directions of the fields

(spin part) and the rotation of spatial dependence without changing the directions of

the field vectors [17].

In special relativity the angular momentum is an antisymmetric rank-two tensor

[18]. This means that it has six independent components. Three of these are the familiar

spatial angular momenta that generate spatial rotations. The remaining three are the

generators of the Lorentz boosts [19], one for each of the three orthogonal cartesian

directions. They may be thought of as the generators of rotations in the sense that

they couple a cartesian direction with time. Like the more familiar spatial angular

momenta, the generators of boosts, for the free electromagnetic field, are constants of

the motion. This is true even though they depend explicitly on time. In this paper we

introduce the generators of boosts and compare and contrast their properties with those

of the remaining three more familar angular momenta. As a first step in exploring their

properties we ask whether a separation into spin and orbital parts may be performed

by following those techniques previously applied to the generators of spatial rotations

[17].
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2. Rotations and boosts

We shall identify our six components of the optical angular momentum with the

infinitessimal generators of rotations and Lorentz boosts. As an introduction we first

remind the reader about the forms of these transformations. We work throughout with

a rationalized system of units in which ε0 = µ0 = c = 1, so that Maxwell’s equations

for the free field become

∇ · E = 0

∇ ·B = 0

∇× E = − ∂

∂t
B

∇×B =
∂

∂t
E . (1)

Let us consider first a rotation of the fields. The transformation that achieves this

has to do two things: (i) it must change the spatial coordinates in the arguments of the

fields and (ii) it must change the orientations of the fields. For the sake of definiteness,

we specify a rotation through angle θ about the x-axis. This means rotating the spatial

coordinates in the arguments of the fields in the opposite direction:

x → x′ = x

y → y′ = cos θ y + sin θ z

z → z′ = cos θ z − sin θ y . (2)

It is also necessary to rotate the directions of the fields:

Ex → Ex

Ey → cos θ Ey − sin θ Ez

Ez → cos θ Ez + sin θ Ey . (3)

If we combine these two contributions we find

Ex(r, t) → E ′
x(r

′, t) = Ex(r, t)

Ey(r, t) → E ′
y(r

′, t) = cos θ Ez(r, t)− sin θ Ez(r, t)

Ez(r, t) → E ′
z(r

′, t) = cos θ Ez(r, t) + sin θ Ey(r, t) . (4)

Our principal interest will be with the infinitessimal transformations that are first

order in θ. It is convenient to write these in terms of the orginal unprimed coordinates:

Ex(r, t) → Ex(r, t)− θ

(
y

∂

∂z
− z

∂

∂y

)
Ex(r, t)

Ey(r, t) → Ey(r, t)− θ

(
y

∂

∂z
− z

∂

∂y

)
Ey(r, t)− θEz(r, t)

Ez(r, t) → Ez(r, t)− θ

(
y

∂

∂z
− z

∂

∂y

)
Ez(r, t) + θEy(r, t) . (5)

The magnetic field transforms in the same fashion, with E simply replaced by B.
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The Lorentz boosts correspond to changing from one inertial frame to a second

moving with velocity v relative to the first. For the sake of definiteness let us specify

that this velocity is in the x-direction. As with the rotation, our transformation needs

to do two things (i) it must change the sptial and temporal coordinates in the arguments

of the fields and (ii) it must mix the electric and magnetic fields. This means changing

both the spatial and temporal coordinates in the arguments of the fields by the Lorentz

transformation [19]

x → x′ = γ(x + vt)

y → y′

z → z′

t → t′ = γ(t + vx) , (6)

where γ = (1−v2)−1/2. It is also necessary to superpose the electric and magnetic fields

from the orginal frame [20]:

Ex → Ex

Ey → γ(Ey + vBz)

Ez → γ(Ez − vBy) . (7)

We can think of this as a rotation between the electric and magnetic fields through an

imaginary angle so that the trigonometrical functions in the spatial rotation are replaced

by hyperbolic ones with argument φ = tanh−1 v.

As with rotations, we shall primarily be interested in the infinitessimal

transformations which are first order in v. As with the rotations, it is convenient to

write these in terms of the orginal unprimed coordinates:

Ex(r, t) → Ex(r, t) + v

(
x

∂

∂t
+ t

∂

∂x

)
Ex(r, t)

Ey(r, t) → Ey(r, t) + v

(
x

∂

∂t
+ t

∂

∂x

)
Ey(r, t) + vBz(r, t)

Ez(r, t) → Ez(r, t) + v

(
x

∂

∂t
+ t

∂

∂x

)
Ez(r, t)− vBy(r, t) . (8)

The corresponding transformation of the magnetic field is

Bx(r, t) → Bx(r, t) + v

(
x

∂

∂t
+ t

∂

∂x

)
Bx(r, t)

By(r, t) → By(r, t) + v

(
x

∂

∂t
+ t

∂

∂x

)
By(r, t)− vEz(r, t)

Bz(r, t) → Bz(r, t) + v

(
x

∂

∂t
+ t

∂

∂x

)
Bz(r, t) + vEy(r, t) . (9)

It is straighforward to show that both sets of transformed fields satisfy Maxwell’s

equations and, in particular, that they are transverse (divergenceless) fields.
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3. Generators of rotations and boosts

In special relativity the angular momentum is a rank-two antisymmetric tensor

Lµν =
∫

d3r
(
xµT 0ν − xνT 0µ

)
, (10)

where xµ are the four space-time coordinates (µ = 0, 1, 2, 3) and T µν is the symmetric

energy stess tensor [21], the relevant elements of which are

T 00 =
1

2
(E2 + B2)

T 0i = (E×B)i = εijkEjBk . (11)

Here we have introduced the fully antisymmetric alternating symbol εijk and also the

summation convention in which there is an implied summation over indices appearing

precisely twice in any given term [22]. The three fully spatial components of the angular

momentum tensor (10) are

Lij =
∫

d3r [ri(E×B)j − rj(E×B)i] . (12)

We can clearly identify this with the k component of angular momentum, Jk = 1
2
εijkL

ij

or, in more familiar form,

J =
∫

d3r r× (E×B) . (13)

This angular momentum is a constant of the motion in that

dJ

dt
= 0 . (14)

This conservation law is a consequence, of course, of the isotropy of free space. The

angular momentum is also the generator of infinitessimal rotations of the electric and

magnetic fields. It generates the transformations [17] ‡
E → E− [θ · (r×∇)]E + θ × E

B → B− [θ · (r×∇)]B + θ ×B , (15)

where the direction of θ is the axis of the rotation and its magnitude (which is small)

is the angle of rotation. These are simply the infinitessimal rotations (5) written in a

more condensed notation.

The remaining three components mix space and time. We denote these by Ki so

that

Ki = Li0 =
∫

d3r
[
ri

2

(
E2 + B2

)
− tεijkEjBk

]
(16)

or, more simply,

K =
∫

d3r
[
r

2

(
E2 + B2

)
− tE×B

]
. (17)

‡ Note that here we are considering active rotations rather than the passive rotations discussed in [17]
and this accounts for the diffrent signs.
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In the service of clarity, we shall refer to this quantity as the boost angular momentum

and to J as the rotation angular momentum. Like the more familiar rotation angular

momentum the boost angular momentum is a constant of the motion in that

dK

dt
= 0 . (18)

The proof of this follows from application of Poynting’s theorem [21] and corresponds

to Newton’s first law of motion as generalised to apply to the centre of energy [18].

A short outline of this is given in Appendix A. The components of the boost angular

momentum are the generators of infinitessimal generators of Lorentz transformations:

E → E +

[
φ ·

(
r

∂

∂t
+ t∇

)]
E− φ×B

B → B +

[
φ ·

(
r

∂

∂t
+ t∇

)]
B + φ× E . (19)

Here the direction of φ is the direction of the relative motion of the new frame and

its magnitude is the (small) relative speed φ = tanh−1 v ≈ v. A brief derivation of

this important result is given in Appendix B. We recognise these as the infinitessimal

boost, given in (8) and (9), written in a more condensed notation. We can iterate this

infinitessimal transformation to obtain the familiar transformations of the fields between

frames differing by a macroscopic velocity [20, 23].

It is worth pausing to comment on the points of similarity and difference between

the two sets of transformations (15) and (19). We recall that each transformation is

required to do two things: (i) to change the spatial and temporal coordinates in the

arguments of the fields and (ii) to change the orientations of the fields, for the rotation,

or to mix the electric and magnetic fields, for the boost. The two terms in the changes

of the fields (15) and (19) correspond to these two changes. We should emphasise that

only the combination of both changes corresponds to a physical transformation of the

fields.

Let us consider first the changes of the coordinates. The operator θ · (r × ∇)

generates a rotation in the spatial coordinates about the θ axis:

r′ = [1 + θ · (r×∇)] r = r + θ × r , (20)

which is the infinitessimal form of the rotation of r. This transformation, being a

spatial rotation, leaves the temporal coordinate unchanged. The operator φ·
(
r ∂

∂t
+ t∇

)

generates something akin to a rotation in space-time to change both the spatial and

temporal coordinates:

r′ =

[
1− φ ·

(
r

∂

∂t
+ t∇

)]
r = r− φ t

t′ =

[
1− φ ·

(
r

∂

∂t
+ t∇

)]
t = t− φ · r , (21)

which we recognise as the infinitessimal form of the Lorentz boost associated with

moving to a frame with velocity φ. When combined and multiplied by i, the six operators
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r×∇ and r ∂
∂t

+t∇ form a set of six generalized angular momentum operators and allow

us to generate any transformation in the Lorentz group [24].

The second parts of our transformations are the changes in direction of the fields

or the mixing of the electric and magnetic fields. For the rotation angular momentum

the electic and magnetic field are rotated about the θ axis by the infinitessimal angle θ:

E → E + θ × E

B → B + θ ×B . (22)

For the boost angular momentum the corresponding transformations are

E → E− φ×B

B → B + φ× E , (23)

which we recognise as the form of the Lorentz transformation, as valid for an

infinitessimal velocity φ. It may not be obvious that we should associate the Lorentz

boost with a rotation. To better understand why this is the case, it is helpful to

combine the electric and magnetic fields in the Riemann–Silberstein complex vector

field [25, 26, 27, 28, 29]

F =
1√
2
(E + iB) . (24)

If we then write the transformations (22) and (23) in terms of the Riemann-Silberstein

vector we find

F → F + θ × F

F → F + iφ× F , (25)

respectively. Hence we can think of the Lorentz boost as a rotation through an imaginary

angle. The presence of the plus sign in the operator r ∂
∂t

+ t∇, as opposed to the more

familiar minus sign implicit in r×∇ may also be traced back to the idea of a rotation

through an imaginary angle.

4. The Heaviside-Larmor symmetry

As a necessary preliminary to exploring the spin and orbital parts of the angular

momentum we first describe a symmetry of the free–field Maxwell equations (1), due to

Heaviside and Larmor [30, 31], that the equations are unchanged on interchanging the

electric and magnetic fields (E → B,B → −E). More generally they are unchanged by

the duplex transformation [21]

E → cos ψE + sin ψB

B → cos ψB− sin ψE , (26)

for any angle ψ. All physical properties of the field are required to be invariant under

this transformation [32], a principle recently described as electric-magnetic democracy

[33]. This requirement is equivalent to the statement that all physical quantities can
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depend on the magnitude and direction of the Riemann–Silberstein vector but not on its

phase [27]. It is clear that the energy density, 1
2
(E2 + B2), and the momentum density,

E ×B, both satisfy this requirement. It follows, therefore, that our six components of

the optical angular momentum, J and K, also satisfy this requirement.

The separation of the optical angular momentum into spin and orbital requires us

to introduce the vector potential A [34]. In order that we can satisfy explicitly the

Heaviside-Larmor symmetry we also introduce a second vector potential C [28]. We

choose both potentials to be transverse fields (∇ ·A = 0 = ∇ ·C) and can then write

the electric and magnetic fields in terms of either potential:

E = − ∂

∂t
A = −∇×C

B = ∇×A = − ∂

∂t
C . (27)

In order to preserve the Heaviside-Larmor symmetry we require that any physical

quantity, when expressed in terms of the potentials, be invariant under the

transformation [17]

A → cos ψA + sin ψC

C → cos ψC− sin ψA . (28)

Taking the curl or the time derivative of these gives the duplex transformation (26).

5. Spin and orbital parts

It has long been understood that it is possible to split the total optical rotation angular

momentum into spin and orbital components as follows [34]:

J =
∫

d3r r× (E×B)

=
∫

d3r[Ei(r×∇)Ai + E×A] , (29)

where we have made use of Gauss’s theorem and assumed that the fields fall off to zero

sufficiently quickly at large distances to make the resulting surface term equal to zero.

It is then natural to consider the first term to be the orbital component and the second

the spin part, although neither of these alone is a true angular momentum [15, 16].

It has been argued that the spin and orbital parts in (29) might not be acceptable

because they do not explicitly satisfy the Heaviside–Larmor symmetry [35]. We can

test this idea by writing the angular momentum in a form that explicitly satisfies this

symmetry [17]

J =
1

2

∫
d3r[Ei(r×∇)Ai + Bi(r×∇)Ci + E×A + B×C] . (30)

It is straightforward to show, using appropriate identities from vector calculus and the

transversality of A and B, that this is equal to (29) and, in particular, that the total

spin part of the rotation angular momentum is

S =
∫

d3rE×A =
1

2

∫
d3r[E×A + B×C] , (31)
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which clearly satisfies the Heaviside-Larmor symmetry. It should be noted, however,

that we can rule out the quantity E × A as a candidate for the density of the spin

angular momentum as this does not respect the Heaviside–Larmor symmetry. The

quantity 1
2
(E×A + B×C), however, does satisfy the symmetry requirement [17].

It is natural to ask whether a similar separation, into spin and orbital parts, is

possible for the three components of the boost optical angular momentum. In order to

explore this possibility we use the curl identities (27) to write

K =
∫

d3r
{
r

2
[−E · (∇×C) + B · (∇×A)]

− t

2
[E× (∇×A)−B× (∇×C)]

}
. (32)

Integrating by parts, assuming that the fields fall off sufficiently quickly at infinity and

using Maxwell’s equations then gives

K =
1

2

∫
d3r

[
Aj

(
r

∂

∂t
+ t∇

)
Ej + Cj

(
r

∂

∂t
+ t∇

)
Bj

]

+
1

2

∫
d3r [C× E−A×B] . (33)

We recognise the combinations r ∂
∂t

+ t∇ from our (infinitessimal) Lorentz

transformations (19) and it is tempting, therefore, to associate the first integral with

the orbital part of K and the second with the spin part. There is a problem with this

line of reasoning, however. To see this we evaluate the integral of the A×B term:

−
∫

d3r(A×B)i = −
∫

d3r[A× (∇×A)]i

= −
∫

d3r Aj∇iAj − Aj∇jAi

= −
∫

d3r∇j

(
1

2
δijA

2 − AjAi

)

= −
∮ (

1

2
δijA

2 − AjAi

)
dsj

= 0 , (34)

where we have use the transversality of A, Gauss’s theorem and assumed that the fields

fall to zero sufficiently quickly at infinity. A similar calculation reveals that the integral

of C × E is also zero and hence the integral in the second line of (33) is identically

zero! The first line of (33) therefore comprises the totality of our boost optical angular

momentum. It seems that for these three components there is no simple separation

into spin and orbital components to match that of the more familiar rotation angular

momentum. It remains unclear whether or not the non-zero quantity 1
2
(C×E−A×B)

may have a physical significance as a local density.

6. Conclusion

When viewed from the perspective of special relativity, the angular momentum is

naturally a six–component quantity. Three of these, the components of the rotation
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angular momentum, are the familiar generators of rotations about an axis in space. The

remaining three, the components of the boost angular momentum, generate the Lorentz

boosts between different inertial frames. These boosts may be understood as rotations

by an imaginary angle, coupling the spatial coordinates with time.

The familiar fully spatial components of the rotation angular momentum may be

split into spin and orbital parts in a natural way, although neither of these component

parts is itself a true angular momentum [15, 16]. We have seen how the Heaviside–

Larmor, or duplex, symmetry suggests a more explicitly symmetric form for these

quantities [17] and argued that it is only such a symmetric quantity that can be a

candidate for a local density of spin or orbital angular momentum.

The introduction of the second vector potential C [28] enabled us to carry out a

splitting of the boost angular momentum in a manner analogous to that for the rotation

angular momentum. We found, however, that the resulting spin-like component of the

boost angular momentum is identically zero. It may be possible to attribute some

physical significance to spin and orbital densities of boost angular momentum but not,

it seems, to separate total spin and orbital components of the boost angular momentum.
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Appendix A. Conservation of K

To prove the conservation of K we evaluate its time derivative to give

dK

dt
=

∫
d3r

r

2

d

dt

(
E2 + B2

)
−

∫
d3r E×B− t

d

dt

∫
d3r E×B . (A.1)

The final integral is zero by virtue of the global conservation of linear momentum.

Poynting’s theorem expresses the local conservation of energy in the form

d

dt

1

2

(
E2 + B2

)
+ ∇ · (E×B) = 0 . (A.2)

This allows us to rewite (A.1) as

dK

dt
= −

∫
d3r r∇ · (E×B)−

∫
d3r E×B

=
∫

d3r [(E×B) ·∇] r−
∫

d3r E×B

= 0 , (A.3)

where we have used integration by parts to obtain the second line.
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Appendix B. Generation of Lorentz boosts

We have identified the quantity K with the Lorentz boosts of the electric and magnetic

fields. We can demonstrate this directly by calculating the infinitessimal transformations

generated by the action of K. We can perform the transformation within the framework

of either classical or quantum electrodynamics but, for definiteness, we choose the

quantum description which requires us to introduce the equal-time commutation relation

[Ei(r), Bj(r
′)] = ih̄εijk∇′

kδ(r− r′) . (B.1)

The operators K may be used to generate a unitary transformation of the electric

and magnetic fields. It suffices for our purposes to consider only infinitessimal

transformations (with φ small) for which the electric field becomes

exp
(

i

h̄
φ ·K

)
Ej (r) exp

(
− i

h̄
φ ·K

)

≈ Ej(r) +
i

h̄
φi [Ki, Ej(r)]

= Ej(r) + φi

∫
d3r′

[
r′iBp(r

′)εpqj∇′
qδ(r− r′)

−tεilmEj(r
′)εmqj∇′

qδ(r− r′)
]

= Ej(r) + φi

[
−εijpBp(r) +

(
ri

∂

∂t
+ t∇i

)
Ej(r)

]
, (B.2)

where we have made use of the first and fourth Maxwell equations. We can rewrite this

in vector form as

exp
(

i

h̄
φ ·K

)
E(r) exp

(
− i

h̄
φ ·K

)

≈ E(r) + φ ·
(
r

∂

∂t
+ t∇i

)
E(r)− φ×B(r) , (B.3)

which we recognise as the infinitessimal Lorentz transformation (19).

We can proceed in a similar manner to obtain the transformation of the magnetic

field. It is more elegant, however, to rely on the Heaviside–Larmor symmetry which

requires that

exp
(

i

h̄
φ ·K

)
[cos θE + sin θB] exp

(
− i

h̄
φ ·K

)

≈ cos θ

[
E + φ ·

(
r

∂

∂t
+ t∇i

)
E− φ×B

]

+ sin θ

[
B + φ ·

(
r

∂

∂t
+ t∇i

)
B + φ× E

]
, (B.4)

which, for θ = π/2, gives the required Lorentz transformation of the magnetic field.
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