Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The signal model : a model for competing risks of opportunistic maintenance

Bedford, Tim and Dewan, Isha and Meilijson, Isaac and Zitrou, Athena (2011) The signal model : a model for competing risks of opportunistic maintenance. European Journal of Operational Research, 214 (3). pp. 665-673. ISSN 0377-2217

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper presents a competing risks reliability model for a system that releases signals each time its condition deteriorates. The released signals are used to inform opportunistic maintenance. The model provides a framework for the determination of the underlying system lifetime from right-censored data, without requiring explicit assumptions about the type of censoring to be made. The parameters of the model are estimated from observational data by using maximum likelihood estimation. We illustrate the estimation process through a simulation study. The proposed signal model can be used to support decision-making in optimising preventive maintenance: at a component level, estimates of the underlying failure distribution can be used to identify the critical signal that would trigger maintenance of the individual component; at a multi-component system level, accurate estimates of the component underlying lifetimes are important when making general maintenance decisions. The benefit of good estimation from censored data, when adequate knowledge about the dependence structure is not available, may justify the additional data collection cost in cases where full signal data is not available.