Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Effects of gasoline and diesel additives on kaolinite

Sentenac, P. and Ayeni, S. and Lynch, R.J. (2012) Effects of gasoline and diesel additives on kaolinite. Environmental Earth Sciences, 66 (3). pp. 783-792. ISSN 1866-6280

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Centrifuge tests were carried out to confirm anddetermine the effect of different pure alcohols, methyl t-butyl ether (MTBE) and mixtures of alcohols with gasoline and diesel on a thin disc of consolidated clay. The evolution of changes in the clay hydraulic conductivity with time was investigated and other structural changes due to chemical attack were monitored. The findings presented here demonstrate that the hydraulic conductivity of the clay appear to be generally related to the polarity of the chemicals and the dielectric constant. The cracking effect of butanol and MTBE on consolidated clay at low flow rate and low stress level was observed. The addition of ethanol or MTBE to diesel increased the clay permeability and the migration of organic chemical. The addition of ethanol to gasoline also caused an increase in the clay hydraulic conductivity. The effect of the association of alcohols with gasoline or diesel on the clay hydraulic conductivity is discussed, with a view to improving current pollution remediation techniques.