Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Oxidised metallophenolicporphyrins as models for compound I of the peroxidases. Reduction of oxidised iron(III), nickel(II) and zinc(II) complexes of meso-tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)prophyrin by the peroxidase substrate p-cresol

DAEID, N N and NOLAN, K B (1993) Oxidised metallophenolicporphyrins as models for compound I of the peroxidases. Reduction of oxidised iron(III), nickel(II) and zinc(II) complexes of meso-tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)prophyrin by the peroxidase substrate p-cresol. Inorganica Chimica Acta, 211 (1). pp. 55-60. ISSN 0020-1693

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Oxidised metal complexes of meso-tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)porphyrin (3), M-TBHPP(ox), react with peroxidase substrates such as p-cresol regenerating the parent metalloporphyrins cleanly and quantitatively. The kinetics of the reduction of the oxidised iron(III), nickel(II) and zinc(II) porphyrin complexes in chloroform and methanol have been investigated. Generally rate expressions of the form, rate={k1+k2[p-cresol]}[M-TBHPP(ox)] were observed where the k1 term represents an auto- or solvent-assisted reduction pathway while the k2 term represents a reduction pathway involving p-cresol. For the reduction of Ni-TBHPP(ox) in chloroform however a rate expression of the form rate={k1+k3[p-cresol]2}[Ni-TBHPP(ox)] was observed, the second order dependence of rate on p-cresol concentration being attributed to pre-equilibrium formation of a p-cresol dimer which in the rate determining step is the active reductant. Rate constants for the above reactions are reported as well as activation parameters for the reduction of the oxidised nickel(II) complex in both solvents.