Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Oxidised metallophenolicporphyrins as models for compound I of the peroxidases. Reduction of oxidised iron(III), nickel(II) and zinc(II) complexes of meso-tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)prophyrin by the peroxidase substrate p-cresol

DAEID, N N and NOLAN, K B (1993) Oxidised metallophenolicporphyrins as models for compound I of the peroxidases. Reduction of oxidised iron(III), nickel(II) and zinc(II) complexes of meso-tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)prophyrin by the peroxidase substrate p-cresol. Inorganica Chimica Acta, 211 (1). pp. 55-60. ISSN 0020-1693

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Oxidised metal complexes of meso-tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)porphyrin (3), M-TBHPP(ox), react with peroxidase substrates such as p-cresol regenerating the parent metalloporphyrins cleanly and quantitatively. The kinetics of the reduction of the oxidised iron(III), nickel(II) and zinc(II) porphyrin complexes in chloroform and methanol have been investigated. Generally rate expressions of the form, rate={k1+k2[p-cresol]}[M-TBHPP(ox)] were observed where the k1 term represents an auto- or solvent-assisted reduction pathway while the k2 term represents a reduction pathway involving p-cresol. For the reduction of Ni-TBHPP(ox) in chloroform however a rate expression of the form rate={k1+k3[p-cresol]2}[Ni-TBHPP(ox)] was observed, the second order dependence of rate on p-cresol concentration being attributed to pre-equilibrium formation of a p-cresol dimer which in the rate determining step is the active reductant. Rate constants for the above reactions are reported as well as activation parameters for the reduction of the oxidised nickel(II) complex in both solvents.