Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Oxidised metallophenolicporphyrins as models for compound I of the peroxidases. Reduction of oxidised iron(III), nickel(II) and zinc(II) complexes of meso-tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)prophyrin by the peroxidase substrate p-cresol

DAEID, N N and NOLAN, K B (1993) Oxidised metallophenolicporphyrins as models for compound I of the peroxidases. Reduction of oxidised iron(III), nickel(II) and zinc(II) complexes of meso-tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)prophyrin by the peroxidase substrate p-cresol. Inorganica Chimica Acta, 211 (1). pp. 55-60. ISSN 0020-1693

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Oxidised metal complexes of meso-tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)porphyrin (3), M-TBHPP(ox), react with peroxidase substrates such as p-cresol regenerating the parent metalloporphyrins cleanly and quantitatively. The kinetics of the reduction of the oxidised iron(III), nickel(II) and zinc(II) porphyrin complexes in chloroform and methanol have been investigated. Generally rate expressions of the form, rate={k1+k2[p-cresol]}[M-TBHPP(ox)] were observed where the k1 term represents an auto- or solvent-assisted reduction pathway while the k2 term represents a reduction pathway involving p-cresol. For the reduction of Ni-TBHPP(ox) in chloroform however a rate expression of the form rate={k1+k3[p-cresol]2}[Ni-TBHPP(ox)] was observed, the second order dependence of rate on p-cresol concentration being attributed to pre-equilibrium formation of a p-cresol dimer which in the rate determining step is the active reductant. Rate constants for the above reactions are reported as well as activation parameters for the reduction of the oxidised nickel(II) complex in both solvents.