Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

On the lack of observable light-induced hydrogen diffusion near room temperature

Branz, H. M. and Bullock, J. N. and Asher, S. and Gleskova, Helena and Wagner, S. (1996) On the lack of observable light-induced hydrogen diffusion near room temperature. Journal of Non-Crystalline Solids, 198-200. pp. 441-444. ISSN 0022-3093

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A 5-day, high-intensity (9 W cm−2), red-light soak of a-Si:H at 65°C yields no detectable H diffusion in a tracer experiment. A new upper bound to the light-induced diffusion coefficient at a temperature so low that thermal diffusion is negligible is found. The null result found here is incompatible with models in which H emission from SiH bonds is proportional at all times to both the light intensity and the metastable defect creation rate. However, this result is compatible with the model proposed by Santos et al. in which both H emission and metastable defect creation are proportional to the product of the free electron and hole densities. In this model, this result implies that fewer than 500 H emissions occur per created metastable defect.