Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Light-induced D diffusion measurements in hydrogenated amorphous silicon : testing H metastability models

Branz, Howard M. and Asher, Sally and Gleskova, Helena and Wagner, Sigurd (1999) Light-induced D diffusion measurements in hydrogenated amorphous silicon : testing H metastability models. Physical Review B (Condensed Matter), 59 (8). pp. 5513-5520. ISSN 0163-1829

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We measure light-induced D tracer diffusion in hydrogenated amorphous silicon samples under conditions at which thermal diffusion is negligible. Under high-intensity (9 W cm-2), red-light soaking at 135°C, the D diffusion coefficient is DD= 1.3×10-18 cm2 s-1 and the rate of D emission from Si-D to transport is 3.5 × 10-5 s-1. We also find an upper bound of DD=3×10-20 cm2 s-1, the light-induced diffusion coefficient at 65°C. Previous experiments had revealed only "light-enhanced" diffusion between from 200 to 300°C, a regime in which thermal diffusion is also significant. Our 135°C result extends the range of the 0.9-eV activation energy for this diffusion; our 65°C upper bound is consistent with the extrapolation of the higher temperature data. We also measure metastable defect creation at 65 and 135°C to test models of light-induced metastability that involve emission of H from Si-H bonds to an H transport level. This class of models can be limited, but not excluded, by our data. The H emission parameter of the H collision model of metastability is also estimated.