Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Failure resistance of amorphous silicon transistors under extreme in-plane strain

Gleskova, H. and Wagner, S. and Suo, Z. (1999) Failure resistance of amorphous silicon transistors under extreme in-plane strain. Applied Physics Letters, 75 (19). pp. 3011-3013. ISSN 0003-6951

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We have applied strain on thin-film transistors (TFTs) made of hydrogenated amorphous silicon on polyimide foil. In tension, the amorphous layers of the TFT fail by periodic cracks at a strain of ∼0.5%. In compression, the TFTs do not fail when strained by up to 2%, which is the highest value we can set controllably. The amorphous transistor materials can support such large strains because they lack a mechanism for dislocation motion. While the tensile driving force is sufficient to overcome the resistance to crack formation, the compressive failure mechanism of delamination is not activated because of the large delamination length required between transistor layers and polymer substrate.