Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

a-Si:H thin film transistors after very high strain

Gleskova, H. and Wagner, S. and Suo, Z. (2000) a-Si:H thin film transistors after very high strain. Journal of Non-Crystalline Solids, 266-269 B. pp. 1320-1324. ISSN 0022-3093

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We fabricate amorphous silicon (a-Si:H) thin-film transistors (TFTs) on a 25 μm Kapton foil, and then bend the foil over mandrels of various radii. The bending causes tensile strain in the TFTs when they face out, and compressive strain when they face in. After bending, we measure the electrical properties of the TFTs. After ∼2% of compressive strain, there is no change in the TFT electrical performance due to bending, namely in the on-current, off-current, source-gate leakage current, mobility and the threshold voltage. In tension, no change in the TFT performance is observed up to the strain of ∼0.5%. For larger tensile strains TFTs fail mechanically by cracking of the TFT layers. These cracks run perpendicularly to the bending direction.