
Proceedings 2nd IMEKO TC 11 International Symposium METROLOGICAL INFRASTRUCTURE

 June 15-17, 2011, Cavtat, Dubrovnik Riviera, Croatia

COMPARISONS OF THE EXECUTION TIMES AND MEMORY

REQUIREMENTS FOR HIGH-SPEED DISCRETE FOURIER TRANSFORMS

AND FAST FOURIER TRANSFORMS, FOR THE MEASUREMENT OF AC

POWER HARMONICS

A. J. Roscoe
 1
,G. M. Burt

1

1
 University of Strathclyde, Glasgow, UK

 E-mail (corresponding author): andrew.roscoe@eee.strath.ac.uk

Abstract − Conventional wisdom dictates that a Fast

Fourier Transform (FFT) will be a more computationally

effective method for measuring multiple harmonics than a

Discrete Fourier Transform (DFT) approach. However, in

this paper it is shown that carefully coded discrete

transforms which distribute their computational load over

many frames can be made to produce results in shorter

execution times than the FFT approach, even for large

number of harmonic measurement frequencies. This is

because the execution time of the presented DFT actually

rises with N and not the classical N2 value, while the

execution time of the FFT rises with Nlog2N.

Keywords Power system harmonics, Harmonic analysis,

Fourier transforms, Power quality.

1. INTRODUCTION

Traditionally, accurate measurement of voltage or

current harmonics within AC power systems can be made

over relatively long timeframes, with relatively low update

rates. For example, [1] specifies that “class A” instruments

measuring power quality shall do so over 10 cycles (for

50 Hz systems) or 12 cycles (for 60 Hz systems), with

further aggregation stages to provide 150/180-cycle and 10-

minute averages. Such pieces of equipment allow standards

such as [2] to be assessed, which specify power system

performance over such 10-minute intervals.

However, new requirements for metering, real-time

power quality assessment, inverter control, and active

control of harmonic contamination, all require accurate

measurement of harmonic content at much higher update

rates. For example, the IEEE specification for PMU (Phase

Measurement Unit) performance C37.118-2005 [3] specifies

update rates of 0,1 Hz to 25 or 30 Hz (2 cycles, for 50 and

60 Hz systems, respectively). A power-electronic device

actively mitigating harmonic contamination might require

an update at its switching frequency. To accurately assess

harmonic content including both even and odd harmonics,

making the measurements over an exact number of cycles is

highly desirable since it minimises the spectral leakage of

any Fourier transform applied to the data, which maximises

the accuracy of the results and minimises the real-time

ripple on the results. Failing to correctly implement such

algorithms can result in poor accuracy and ripple for

off-nominal frequencies [4] [5].

It should be noted that the update rate can be much

higher than the fundamental frequency, even though the

measurements consider full cycle(s) of data. This is possible

if the measurement algorithms consider the entire dataset

every computational frame, coherent with the ADC

(analogue to digital converter) sample rate, and output a new

result every frame or every few frames.

In this paper, two distinct methods are presented which

are able to make such measurements over exactly 1 cycle.

Both methods assume that the measuring equipment sample

rate is fixed. This differs from some existing types of

measuring equipment which modify their sample rates to

match the AC power frequency. The first method involves

carefully and quickly re-sampling the sampled waveform in

such a way that exactly 2n samples fall within one

fundamental period, when n is integer. A standard FFT (Fast

Fourier Transform) can then be used to reveal the harmonic

analysis, with zero or minimal spectral leakage [6] [7]. The

second method uses Discrete Fourier Transforms (DFTs) to

measure each and every harmonic of interest. While

intuitively this will provide a more inefficient solution, the

DFTs are implemented using carefully coded rolling buffers

and integrators, which minimises the numerical calculations

per frame [8] [9]. This leads to some counter-intuitive

results which are presented later.

In the following sections, these two algorithms are

described in greater detail. Then, the two algorithms are

tested in real-time using two candidate processors, to assess

the actual achievable execution times and required data

memory.

2. MEASUREMENT METHODS

Both methods presented assume that the incoming data is

sampled at a suitable data rate, which in this paper is

assumed to be at twice the Nyquist frequency of the highest

harmonic to be measured (Oversampling factor mO=2) at

nominal frequency, or at a sample frequency high enough to

ensure aliasing does not corrupt the measurements. For

example:

max02

1

Hfm
T

o

s = . (1)

where Ts is the sample time and computational frame

time (reciprocal of sample frequency and frame rate), m0 is

the oversampling factor, f0 is the nominal frequency, and

Hmax is the highest order harmonic to be measured (or

required to avoid aliasing).

Proceedings 2nd IMEKO TC 11 International Symposium METROLOGICAL INFRASTRUCTURE

 June 15-17, 2011, Cavtat, Dubrovnik Riviera, Croatia

The samples from the ADC (analogue to digital

converter) flow with a fixed time interval of Ts in both

methods presented. It is assumed that a measurement of the

fundamental frequency is available. Indeed, frequency can

be measured by dΦ/dt of the fundamental using the methods

described in this paper or [8].

Both methods presented in this paper measure the

fundamental and harmonics over 1 exact cycle period. This

limits the analysis to exact harmonics, and precludes

accurate analysis of inter-harmonics. Both methods could be

adjusted to do this, but would require measurement over

longer integer numbers of cycles to enhance the frequency

resolution while still minimising spectral leakage [6].

The algorithms in this paper are coded in MATLAB®

Simulink code, and then compiled into ‘C’ code for target

processors using the Real-Time Workshop and Embedded

Coder toolboxes. This provides platform independence and

a robust development environment. The major

benchmarking activities have been carried out on the 32-bit

Infineon TC1796 microcontroller [10], which is targeted at

automotive applications but is also highly suitable for

power-electronic applications. For reference, in this paper,

the programs were executed from internal flash memory via

the CPU cache at 0x80000000, using the internal 56kB and

64kB RAM sections at 0xD0000000 and 0xC0000000.

2.1. FFT measurement method

For the FFT method, the challenge is to re-sample the

data into a new data stream with a different sample rate,

such that 2n samples cover exactly the period of the

fundamental signal, where 2n is selected such that it is large

enough to provide at least the same level of oversampling

mO as provided by the ADC sample rate, at the nominal

frequency f0. This method is described in [6], and an

overview is shown in Fig. 1. However, in this paper

significant effort has been taken to optimise the

implementation.

Fig. 1. Overview of FFT algorithm.

Firstly, the third-order interpolation using the Newton

Interpolation Formula is optimised relative to [6]. The

algorithm is shown in Fig. 2, which provides interpolation

backwards in time by fractional proportions of the ADC

sample time Ts.

Fig. 2. Representation of 3rd order interpolation algorithm

However, the actual algorithm cannot usefully be coded

directly in Simulink, since it requires asynchronous sample

rate conversion, from the fixed sample time Ts to the varying

sample time required to fill 2n samples in exactly one

fundamental period. In this case, the simplest solution is to

write some Embedded MATLAB script which carries out

the task. This continuously updates a rolling buffer of 2n

samples, bringing in one or more new interpolated samples

each frame, and over-writing the oldest ones in a FIFO

(first-in first-out) nature. However, when built, this is results

in ‘memcpy’ operations in the ‘C’ code, which wastes

precious CPU time. Therefore, the algorithm has been coded

in a ‘fully in-lined’ Simulink ‘S function’, using ‘Work

vectors’ to manage the buffer of 2n samples. The most

informative parts of this algorithm are shown in Fig. 3,

which is an excerpt from the ‘S function’ ‘C’ code. In this

algorithm, Tlag_decrement is the reciprocal of the number

of new FFT samples which need to be generated each

computational frame, i.e. the ratio of the required FFT

sample rate to the fixed ADC sample rate.

Fig. 3. Extract from the Simulink ‘S function’ for re-sampling from

Ts to the FFT FIFO buffer.

ADC

(Sample

Time Ts)

Resample to fit

NFFT=2
n samples

in one period

FIFO data buffer

Length NFFT=2
n samples

1/z state

delay

FFT

Cartesian to

polar

analysis

Optional

downsampling

to slower

update rate

 int32_T *FFT_ptr = ssGetIWork(S);

 real_T *xD = ssGetRWork(S);

 int_T ok = 1;

 real_T t,a,D1,D2,D3;

 D1 = xD[0] - (*Signal);

 D2 = xD[1] - D1;

 D3 = xD[2] - D2;

 *Tlag = xD[3] + 1;

 while (ok) {

 t = (*Tlag) - (*Tlag_decrement);

 ok = (t>=0);

 if (ok) {

 (*Tlag) = t;

 /* 1st order interpolation */

 a = (*Signal) + D1*(*Tlag);

 t = (*Tlag) * ((*Tlag)-1);

 a += D2*t*0.5;

 /* 2nd order interpolation */

 t *= ((*Tlag)-2);

 a += D3*t/6;

 /* 3rd order interpolation */

 /* bump the FIFO buffer */

 (*FFT_ptr)++;

 if ((*FFT_ptr) > (N_FFT-1)) {

 *FFT_ptr=0;

 }

 FFT_Data[*FFT_ptr] = a;

 }

 }

 *FFT_pointer = *FFT_ptr;

/* Updates for states */

 xD[0] = *Signal;

 xD[1] = D1;

 xD[2] = D2;

 xD[3] = *Tlag;

Proceedings 2nd IMEKO TC 11 International Symposium METROLOGICAL INFRASTRUCTURE

 June 15-17, 2011, Cavtat, Dubrovnik Riviera, Croatia

By fully in-lining the ‘S function’, the execution time of

the re-sampling is reduced to less than 0.9µs per

computational frame.

Next, the 2n samples pass to an FFT. The Simulink FFT

block is used, which is well optimised and automatically

recognises that the input data is real (not complex) and

reduces the 2n sample FFT to a 2(n-1) FFT [11]. Finally, the

required fundamental and harmonic measurements are

extracted from the FFT output. The Cartesian to polar

analysis requires the use of sqrt() and atan2() functions

which are computationally expensive [9]. In addition, when

referencing the harmonic phases to the fundamental phase,

care is taken to avoid the use of the Simulink ‘MOD’

function to keep phases within the range of –π to +π since

this can take up to 2.3µs per operation [9]. Instead, native

casting from floating-point to integer types in C is used to

create a manually coded ‘MOD’ function, taking care to

account for the variant behaviours of different target

processors [9]. This drops the execution time for ‘MOD’ to

less than 0.4µs per operation. Even so, the amplitude and

phase analysis of 40 harmonics, can be a significant

proportion of the entire algorithm execution time, as shown

later.

While the re-sampling is very fast when implemented in

the FIFO fashion on a continuous basis, both the FFT

operation and the magnitude/phase analysis can be time

consuming. In particular, the FFT operation has to analyse

the entire dataset each time it is executed. In the FFT

algorithm, the option exists to only carry out the FFT

operation and final analysis at a much lower data rate than

that of the sampled ADC data, potentially using a

low-priority background task. The only part of the algorithm

which must be executed with high priority at the sample

time Ts is the re-sampling and maintenance of the FIFO

buffer integrity.

In terms of data memory use, the FFT algorithm is very

efficient. For an algorithm using an NFFT=2
n point FFT, the

dominant data memory required (assuming 32-bit

arithmetic) is 4*NFFT bytes for the FIFO buffer, 8*NFFT

bytes for the FFT (at its output, although it is evaluated as a

2(n-1) point FFT), and 4*NFFT*0.75 for a “twiddle” array used

inside the Simulink FFT algorithm.

2.2. DFT measurement method

The DFT method builds simply upon the method

described in [8], using the optimisations described in [9]

which minimise the execution time. A high-level view of the

DFT algorithm is shown in Fig. 4. In this method, every

harmonic to be analysed is subjected to a DFT analysis, by

correlation with sin() and cos() waveforms at the appropriate

harmonic frequencies (Fig. 5), and evaluation of the definite

integrals of the correlations over exactly one fundamental

period (Fig. 6).

This is achieved by continuously integrating the

correlations and storing the results in rolling buffers, each of

which must be long enough to store a full period of the

lowest frequency fmin which can be analysed accurately.

Typically this can be set to about fmin=0.8*f0 (nominal) for

most power system operations, but can be set lower for

specialised applications (at the expense of additional

memory requirement).

Fig. 4. Overview of DFT algorithm.

Fig. 5. Configuration of correlations for a single harmonic, and

configuration of buffers (the TimePeriodInfo signal) which is

common for all harmonics

Fig. 6. Evaluation of DFT correlations for the fundamental or a

single harmonic

The definite integrals are evaluated by subtracting the

integrator output at a previous time, exactly one

fundamental period in the past, from the most recent

integrator output. The complications are that this time is

generally not an integer multiple of the sample time Ts, and

ADC

(Sample

Time Ts)

Fundamental

and RMS DFT

analysis

Optional

downsampling

to slower

update rate

Harmonic 1

DFT analysis

Harmonic Hmax

DFT analysis

Harmonic 2

DFT analysis

Configure

buffers and

integrators

Cartesian to

polar

analysis

Proceedings 2nd IMEKO TC 11 International Symposium METROLOGICAL INFRASTRUCTURE

 June 15-17, 2011, Cavtat, Dubrovnik Riviera, Croatia

that the integrator can tend to wind up. For this reason, not

one but 3 buffers are required to evaluate each integral: two

to form a pair of integrators operating in a tick-tock scheme,

and a third to carry out the 1st-order linear interpolation to

account for the ‘part sample’ effect (Fig. 7, Fig. 8, Fig. 9 and

[8]). The tick-tock pair are operated with each integrator

reset to zero once every few cycles, then left to acquire at

least one full cycle of data and become valid, and then used

until the other integrator path becomes valid. A 2-buffer

variant is possible [8], but introduces a varying latency

which may be undesirable in active control applications.

Fig. 7. The procedure for performing exact-time averaging [8].

Since the analysis of every harmonic occurs over the

same single-cycle period, every buffer is configured the

same way, and this configuration, including a large part of

the 1st-order interpolation calculations, only need to be

carried out once for the entire set of harmonics, each frame,

based upon the estimation of fundamental frequency. Thus,

in Fig. 5, the block which generates the TimePeriodInfo

signal only needs to be executed for the fundamental. The

analyses for the higher harmonics re-use the same

information.

Fig. 8. Exact-time averaging code, showing twin integrators in

tick-tock configuration, and the interpolation block.

The output of the definite integrators form the complex

values of the fundamental and harmonic components, which

can then be related together and converted to

amplitude/phase in a similar way to the FFT analysis.

Fig. 9. Correction of the integral to interpolate between the oldest

samples so that the integral is over exactly one fundamental period,

using pre-calculated buffer and interpolation parameters which are

shared with all harmonic analyses.

By comparison with the FFT algorithm, the option exists

to down-sample the final data before the final Cartesian to

polar analysis, but apart from that, the entire algorithm must

be executed at the sample time Ts. That having been said,

while the FFT operation needs to examine the entire dataset

every time it is executed, the beauty of the DFT algorithm

using the rolling buffers is that only a tiny part of the

Fourier Transform has to be calculated each time a new

ADC sample arrives. Essentially, the DFT computation is

spread evenly over a single fundamental period, and is

continuously updated.

In terms of data memory use, the DFT algorithm is

relatively heavy. The requirement is 9 buffers for the

fundamental (3 each for each sin() and cos() integral, and 3

more can be used to allow evaluation of the overall RMS

(Root-Mean-Square) and THD (Total Harmonic Distortion)

figures), plus 6 buffers for each harmonic to be measured.

The length of the buffers is (1/fmin/Ts+2), requiring 4 times

this amount of bytes assuming 32-bit arithmetic is used.

3. BENCHMARKING RESULTS

The algorithms were initially benchmarked on the

Infineon TC1796 microcontroller, in a similar manner to

that described in [9]. Care was taken to incrementally add

reference code (test signal generators) and then the main

pieces of algorithm code, so that true execution times were

measured. The times were measured using a toggled output

line to indicate the beginning and end of the test algorithm,

and a digital scope to measure the pulse widths. Multiple

repetitions were used to increase the measurement accuracy,

particularly for smaller algorithmic sections with short

execution times.

The first set of results (Fig. 10) show the execution times

of the two methods (FFT and DFT) when required to

measure the fundamental and harmonics up to (and

including) a value Hmax which was varied between 1 to 40.

In this analysis, the ADC sample time Ts varies with the

required maximum harmonic by (1). Over-sampling m0 is

set at 2. It is assumed that harmonics above the required

measured set are attenuated in analogue filters to avoid

aliasing effects.

Some of the key parameters of the two algorithms during

this test are shown in Table I, for a nominal value of

f0=50 Hz.

Proceedings 2nd IMEKO TC 11 International Symposium METROLOGICAL INFRASTRUCTURE

 June 15-17, 2011, Cavtat, Dubrovnik Riviera, Croatia

TABLE I. Parameters for flexible ADC sample-rate test

Hmax =

Harmonics

To

analyse

1/Ts

DFT

buffer

length

(floats)

NFFT

FFT

Sample

rate

(for f=f0)

1 200 Hz 7 8 400 Hz

5 1 kHz 27 32 1,6 kHz

11 2,2 kHz 57 64 3,2 kHz

21 4,2 kHz 107 128 6,4 kHz

31 6,2 kHz 157 128 6,4 kHz

40 8 kHz 202 256 12,8 kHz

Fig. 10 shows the resulting execution times, which are

also broken down for the FFT algorithm to show the times

required for the actual FFT operation, and the cartesian to

polar analysis. The re-sampling takes less than 0.9µs per

frame. Two lines are shown for the DFT algorithms. These

are optimistic and pessimistic values for the TC1796, and

the variation occurs depending upon the RAM (random

access memory) speed. When larger quantities of memory

are being accessed quickly, it can take longer for each

access due (presumably) to the lowered ability of the CPU

to cache the active memory segments. The red dashed line

shows the limit at which the algorithms cannot be executed

on the TC1796 within the allowed frame time Ts without

down-sampling at least part of the analysis.

Fig. 10 shows that there is little to choose in execution

time between the two methods.

Fig. 10. Execution times on the TC1796. ADC sample rate set for

2x over-sampling at the highest harmonic to analyse.

Fig. 11 shows the data memory requirements of the two

algorithms. Clearly, the DFT algorithm requires much more

memory, which in this test rises as Hmax
2 due to both the

number of buffers, and the buffer lengths, rising with Hmax.

The required data memory for the FFT algorithm rises only

with Hmax. For the TC1796 processor, the maximum

contiguous RAM segment with fast access speed is 64kB,

which constrained the actual DFT benchmarking

experiments to Hmax<=21. The DFT results for Hmax>21 in

Fig. 10 and Fig. 11 have been carefully calculated and

extrapolated, as if more contiguous memory was genuinely

available.

Fig. 11. Data memory requirement. ADC sample rate set for 2x

oversampling at the highest harmonic to analyse.

Next, a similar test assumes that the ADC sample rate

must remain fixed at 8 kHz to avoid aliasing, but that Hmax

varies as before. In this case NFFT, the DFT buffer length,

and the FFT sample rate, are all fixed at their values in the

bottom row of Table I. The resulting execution times are

shown in Fig. 12. The DFT algorithm is clearly faster when

only the low orders of harmonics need to be measured

directly.

Fig. 12. Execution times on the TC1796. ADC sample rate 8kHz.

Finally, the analysis using variable ADC sample time

(Table I) is repeated using the MVME5500 PowerPC card

[12] using the MPC7457 processor [13], embedded with a

VME rack system [14]. This card has 512MB of memory

and a 512kB on-chip cache, and is easily capable of

handling the data memory requirement of even the DFT

analysis to the 40th harmonic and way beyond. The data

memory requirement is doubled compared to Fig. 11, only

because 64-bit arithmetic is applied by default by MATLAB

for this target. The execution times (Fig. 13) are roughly

40% of the TC1796 times, and the DFT analysis is shown to

be more clearly favourable over the FFT analysis than in

Fig. 10, probably due to the faster memory access of the

MVME5500 and its ability to quickly access all the rolling

buffers every frame.

Proceedings 2nd IMEKO TC 11 International Symposium METROLOGICAL INFRASTRUCTURE

 June 15-17, 2011, Cavtat, Dubrovnik Riviera, Croatia

Fig. 13. Execution times on the MVME5500. ADC sample rate set

for 2x oversampling at the highest harmonic to analyse.

4. CONCLUSION

While the FFT (Fast Fourier Transform) is generally

regarded as the faster way to analyse waveforms than the

DFT (Discrete Fourier Transform), it is found in this paper

that in the application of electrical power systems, this is not

always the case. Whereas intuition might lead to the

suspicion that the DFT might be faster than the FFT at

analysing small numbers of harmonics, but slower for

analysing larger numbers of harmonics, in fact the DFT

method can be competitive or faster than the FFT method

for all numbers of harmonics.

The time taken for the core of the FFT algorithm to be

performed rises as NFFT*log2(NFFT) [11] where NFFT rises

with the highest harmonic Hmax which needs to be analysed.

In contrast, while the execution time of a classical DFT

would rise with N*Hmax, where N is the number of DFT time

points, in the presented algorithm the DFT only needs to

perform part of the analysis every frame, and the analysis is

spread out over many frames spanning one fundamental

period. As a result, the execution time for the DFT

algorithm only rises proportionately to Hmax. Therefore, the

DFT algorithm actually gets faster and faster compared to

the FFT algorithm as Hmax increases, by a factor of

log2(Hmax).

However, the memory requirement of the DFT algorithm

is relatively large. While this is not an issue for some

processors, for smaller microcontrollers the available

memory may place hard limits on the number of harmonics

which can be analysed, or the speed of the access to the

wide memory segments may increase the execution time in a

non-linear fashion.

Both of these algorithms evaluate sampled data over

exactly one fundamental cycle. Both of these algorithms, but

particularly the DFT algorithm, are suitable for creating data

outputs at update rates much higher than once per cycle,

potentially at the full ADC sample time Ts, due to the

algorithm structure. This produces fast-responding

measurements which can be used for metering or active

harmonic control applications.

REFERENCES
[1] BSI, "Electromagnetic compatability (EMC) - Part 4-30:Testing

and measurement techniques — Power quality measurement

methods", BS EN 61000-4-3:2003, 2003.

[2] British Standards, "Voltage characteristics of electricity supplied

by public distribution systems", 2000.

[3] K. E. Martin, D. Hamai, M. G. Adamiak, S. Anderson, M.

Begovic, G. Benmouyal, G. Brunello, J. Burger, J. Y. Cai, B.

Dickerson, V. Gharpure, B. Kennedy, D. Karlsson, A. G.

Phadke, J. Salj, V. Skendzic, J. Sperr, Y. Song, C. Huntley, B.

Kasztenny, and E. Price, "Exploring the IEEE standard

C37.118-2005 synchrophasors for power systems", IEEE

Transactions on Power Delivery, vol. 23, pp. 1805-1811, Oct

2008.

[4] Y. Hu and D. Novosel, "Progresses in PMU testing and

calibration", 2008 Third International Conference on Electric

Utility Deregulation and Restructuring and Power

Technologies, Vols 1-6, pp. 150-155, 2008.

[5] J. Depablos, V. Centeno, A. G. Phadke, and M. Ingram,

"Comparative testing of synchronized phasor measurement

units", 2004 IEEE Power Engineering Society General Meeting,

Vols 1 and 2, pp. 948-954, 2004.

[6] G. W. Chang, C. I. Chen, Y. J. Liu, and M. C. Wu, "Measuring

power system harmonics and interharmonics by an improved

fast Fourier transform-based algorithm", IET Generation

Transmission & Distribution, vol. 2, pp. 192-201, Mar 2008.

[7] H. Qian, R. X. Zhao, and T. Chen, "Interharmonics analysis

based on interpolating windowed FFT algorithm", IEEE

Transactions on Power Delivery, vol. 22, pp. 1064-1069, Apr

2007.

[8] A. J. Roscoe, G. M. Burt, and J. R. McDonald, "Frequency and

fundamental signal measurement algorithms for distributed

control and protection applications", IET Generation,

Transmission & Distribution vol. 3, pp. 485-495, May 2009.

[9] A. J. Roscoe, S. M. Blair, and G. M. Burt, "Benchmarking and

optimisation of Simulink code using Real-Time Workshop and

Embedded Coder for inverter and microgrid control

applications", in Universities' Power Engineering Conference

(UPEC), Glasgow, UK, 2009.

[10] Infineon Technologies, "Infineon Tricore family (TC1796)",

Available: http://www.infineon.com, accessed January 2011.

[11] W. H. Press, S. A. Teukolski, W. T. Vetterling, and B. P.

Flannery, "Numerical Recipes in C", Second ed, ISBN 0521

431085, 1992.

[12] Emerson Network Power, "MVME5500 VME with PowerPC

Processor", Available: http://www.emersonnetworkpower.com,

accessed January 2011.

[13] Freescale, "MPC7455: Host Processor", Available:

http://www.freescale.com, accessed January 2011.

[14] Applied Dynamics International, "Real Time Station (RTS)",

Available: http://www.adi.com, accessed January 2011.

Author (s):

Dr Andrew J. Roscoe, University of Strathclyde, Department of

Electronic & Electrical Engineering, Royal College, 204 George

Street, Glasgow, UK. andrew.roscoe@eee.strath.ac.uk

Prof Graeme M. Burt, University of Strathclyde, Department of

Electronic & Electrical Engineering, Royal College, 204 George

Street, Glasgow, UK. g.burt@eee.strath.ac.uk

