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Abstract − Conventional wisdom dictates that a Fast 

Fourier Transform (FFT) will be a more computationally 

effective method for measuring multiple harmonics than a 

Discrete Fourier Transform (DFT) approach. However, in 

this paper it is shown that carefully coded discrete 

transforms which distribute their computational load over 

many frames can be made to produce results in shorter 

execution times than the FFT approach, even for large 

number of harmonic measurement frequencies. This is 

because the execution time of the presented DFT actually 

rises with N and not the classical N2 value, while the 

execution time of the FFT rises with Nlog2N. 

 

Keywords Power system harmonics, Harmonic analysis, 

Fourier transforms, Power quality. 

 

1.  INTRODUCTION 

 

Traditionally, accurate measurement of voltage or 

current harmonics within AC power systems can be made 

over relatively long timeframes, with relatively low update 

rates. For example, [1] specifies that “class A” instruments 

measuring power quality shall do so over 10 cycles (for 

50 Hz systems) or 12 cycles (for 60 Hz systems), with 

further aggregation stages to provide 150/180-cycle and 10-

minute averages. Such pieces of equipment allow standards 

such as [2] to be assessed, which specify power system 

performance over such 10-minute intervals. 

However, new requirements for metering, real-time 

power quality assessment, inverter control, and active 

control of harmonic contamination, all require accurate 

measurement of harmonic content at much higher update 

rates. For example, the IEEE specification for PMU (Phase 

Measurement Unit) performance C37.118-2005 [3] specifies 

update rates of 0,1 Hz to 25 or 30 Hz (2 cycles, for 50 and 

60 Hz systems, respectively). A power-electronic device 

actively mitigating harmonic contamination might require 

an update at its switching frequency. To accurately assess 

harmonic content including both even and odd harmonics, 

making the measurements over an exact number of cycles is 

highly desirable since it minimises the spectral leakage of 

any Fourier transform applied to the data, which maximises 

the accuracy of the results and minimises the real-time 

ripple on the results. Failing to correctly implement such 

algorithms can result in poor accuracy and ripple for 

off-nominal frequencies [4] [5]. 

It should be noted that the update rate can be much 

higher than the fundamental frequency, even though the 

measurements consider full cycle(s) of data. This is possible 

if the measurement algorithms consider the entire dataset 

every computational frame, coherent with the ADC 

(analogue to digital converter) sample rate, and output a new 

result every frame or every few frames. 

In this paper, two distinct methods are presented which 

are able to make such measurements over exactly 1 cycle. 

Both methods assume that the measuring equipment sample 

rate is fixed. This differs from some existing types of 

measuring equipment which modify their sample rates to 

match the AC power frequency. The first method involves 

carefully and quickly re-sampling the sampled waveform in 

such a way that exactly 2n samples fall within one 

fundamental period, when n is integer. A standard FFT (Fast 

Fourier Transform) can then be used to reveal the harmonic 

analysis, with zero or minimal spectral leakage [6] [7]. The 

second method uses Discrete Fourier Transforms (DFTs) to 

measure each and every harmonic of interest. While 

intuitively this will provide a more inefficient solution, the 

DFTs are implemented using carefully coded rolling buffers 

and integrators, which minimises the numerical calculations 

per frame [8] [9]. This leads to some counter-intuitive 

results which are presented later. 

In the following sections, these two algorithms are 

described in greater detail. Then, the two algorithms are 

tested in real-time using two candidate processors, to assess 

the actual achievable execution times and required data 

memory. 

 

2. MEASUREMENT METHODS 

 

Both methods presented assume that the incoming data is 

sampled at a suitable data rate, which in this paper is 

assumed to be at twice the Nyquist frequency of the highest 

harmonic to be measured (Oversampling factor mO=2) at 

nominal frequency, or at a sample frequency high enough to 

ensure aliasing does not corrupt the measurements. For 

example:  
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where Ts is the sample time and computational frame 

time (reciprocal of sample frequency and frame rate), m0 is 

the oversampling factor, f0 is the nominal frequency, and 

Hmax is the highest order harmonic to be measured (or 

required to avoid aliasing). 
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The samples from the ADC (analogue to digital 

converter) flow with a fixed time interval of Ts in both 

methods presented. It is assumed that a measurement of the 

fundamental frequency is available. Indeed, frequency can 

be measured by dΦ/dt of the fundamental using the methods 

described in this paper or [8]. 

Both methods presented in this paper measure the 

fundamental and harmonics over 1 exact cycle period. This 

limits the analysis to exact harmonics, and precludes 

accurate analysis of inter-harmonics. Both methods could be 

adjusted to do this, but would require measurement over 

longer integer numbers of cycles to enhance the frequency 

resolution while still minimising spectral leakage [6]. 

The algorithms in this paper are coded in MATLAB® 

Simulink code, and then compiled into ‘C’ code for target 

processors using the Real-Time Workshop and Embedded 

Coder toolboxes. This provides platform independence and 

a robust development environment. The major 

benchmarking activities have been carried out on the 32-bit 

Infineon TC1796 microcontroller [10], which is targeted at 

automotive applications but is also highly suitable for 

power-electronic applications. For reference, in this paper, 

the programs were executed from internal flash memory via 

the CPU cache at 0x80000000, using the internal 56kB and 

64kB RAM sections at 0xD0000000 and 0xC0000000. 

 

2.1. FFT measurement method 

 

For the FFT method, the challenge is to re-sample the 

data into a new data stream with a different sample rate, 

such that 2n samples cover exactly the period of the 

fundamental signal, where 2n is selected such that it is large 

enough to provide at least the same level of oversampling 

mO as provided by the ADC sample rate, at the nominal 

frequency f0.  This method is described in [6], and an 

overview is shown in Fig. 1. However, in this paper 

significant effort has been taken to optimise the 

implementation. 

 

 

Fig. 1. Overview of FFT algorithm. 

 

Firstly, the third-order interpolation using the Newton 

Interpolation Formula is optimised relative to [6]. The 

algorithm is shown in Fig. 2, which provides interpolation 

backwards in time by fractional proportions of the ADC 

sample time Ts.  

 

 

Fig. 2. Representation of 3rd order interpolation algorithm 

 

However, the actual algorithm cannot usefully be coded 

directly in Simulink, since it requires asynchronous sample 

rate conversion, from the fixed sample time Ts to the varying 

sample time required to fill 2n samples in exactly one 

fundamental period. In this case, the simplest solution is to 

write some Embedded MATLAB script which carries out 

the task. This continuously updates a rolling buffer of 2n 

samples, bringing in one or more new interpolated samples  

each frame, and over-writing the oldest ones in a FIFO 

(first-in first-out) nature. However, when built, this is results 

in ‘memcpy’ operations in the ‘C’ code, which wastes 

precious CPU time. Therefore, the algorithm has been coded 

in a ‘fully in-lined’ Simulink ‘S function’, using ‘Work 

vectors’ to manage the buffer of 2n samples. The most 

informative parts of this algorithm are shown in Fig. 3, 

which is an excerpt from the ‘S function’ ‘C’ code. In this 

algorithm, Tlag_decrement is the reciprocal of the number 

of new FFT samples which need to be generated each 

computational frame, i.e. the ratio of the required FFT 

sample rate to the fixed ADC sample rate. 

 

 

Fig. 3. Extract from the Simulink ‘S function’ for re-sampling from 

Ts to the FFT FIFO buffer. 
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   int32_T  *FFT_ptr = ssGetIWork(S); 

   real_T   *xD = ssGetRWork(S); 

 int_T    ok = 1; 

 real_T   t,a,D1,D2,D3; 

   

 D1 = xD[0] - (*Signal); 

 D2 = xD[1] - D1; 

 D3 = xD[2] - D2; 

 *Tlag = xD[3] + 1; 

 while (ok) { 

        t = (*Tlag) - (*Tlag_decrement); 

        ok = (t>=0); 

        if (ok) { 

            (*Tlag) = t; 

            /* 1st order interpolation */ 

            a = (*Signal) + D1*(*Tlag); 

            t = (*Tlag) * ((*Tlag)-1); 

            a += D2*t*0.5; 

            /* 2nd order interpolation */ 

            t *= ((*Tlag)-2); 

            a += D3*t/6; 

            /* 3rd order interpolation */ 

            /* bump the FIFO buffer */ 

            (*FFT_ptr)++; 

            if ( (*FFT_ptr) > (N_FFT-1) ) { 

                *FFT_ptr=0; 

         } 

            FFT_Data[*FFT_ptr] = a; 

        } 

    }      

    *FFT_pointer = *FFT_ptr;  

/* Updates for states */ 

    xD[0] = *Signal; 

    xD[1] = D1; 

    xD[2] = D2; 

    xD[3] = *Tlag;  
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By fully in-lining the ‘S function’, the execution time of 

the re-sampling is reduced to less than 0.9µs per 

computational frame. 

Next, the 2n samples pass to an FFT. The Simulink FFT 

block is used, which is well optimised and automatically 

recognises that the input data is real (not complex) and 

reduces the 2n sample FFT to a 2(n-1) FFT [11]. Finally, the 

required fundamental and harmonic measurements are 

extracted from the FFT output. The Cartesian to polar 

analysis requires the use of sqrt() and atan2() functions 

which are computationally expensive [9]. In addition, when 

referencing the harmonic phases to the fundamental phase, 

care is taken to avoid the use of the Simulink ‘MOD’ 

function to keep phases within the range of –π to +π since 

this can take up to 2.3µs per operation [9]. Instead, native 

casting from floating-point to integer types in C is used to 

create a manually coded ‘MOD’ function, taking care to 

account for the variant behaviours of different target 

processors [9]. This drops the execution time for ‘MOD’ to 

less than 0.4µs per operation. Even so, the amplitude and 

phase analysis of 40 harmonics, can be a significant 

proportion of the entire algorithm execution time, as shown 

later. 

While the re-sampling is very fast when implemented in 

the FIFO fashion on a continuous basis, both the FFT 

operation and the magnitude/phase analysis can be time 

consuming. In particular, the FFT operation has to analyse 

the entire dataset each time it is executed. In the FFT 

algorithm, the option exists to only carry out the FFT 

operation and final analysis at a much lower data rate than 

that of the sampled ADC data, potentially using a 

low-priority background task. The only part of the algorithm 

which must be executed with high priority at the sample 

time Ts is the re-sampling and maintenance of the FIFO 

buffer integrity. 

In terms of data memory use, the FFT algorithm is very 

efficient. For an algorithm using an NFFT=2
n point FFT, the 

dominant data memory required (assuming 32-bit 

arithmetic) is 4*NFFT bytes for the FIFO buffer, 8*NFFT 

bytes for the FFT (at its output, although it is evaluated as a 

2(n-1) point FFT), and 4*NFFT*0.75 for a “twiddle” array used 

inside the Simulink FFT algorithm. 

 

2.2. DFT measurement method 

 

The DFT method builds simply upon the method 

described in [8], using the optimisations described in [9] 

which minimise the execution time. A high-level view of the 

DFT algorithm is shown in Fig. 4. In this method, every 

harmonic to be analysed is subjected to a DFT analysis, by 

correlation with sin() and cos() waveforms at the appropriate 

harmonic frequencies (Fig. 5), and evaluation of the definite 

integrals of the correlations over exactly one fundamental 

period (Fig. 6). 

This is achieved by continuously integrating the 

correlations and storing the results in rolling buffers, each of 

which must be long enough to store a full period of the 

lowest frequency fmin which can be analysed accurately. 

Typically this can be set to about fmin=0.8*f0 (nominal) for 

most power system operations, but can be set lower for 

specialised applications (at the expense of additional 

memory requirement). 

 

 

Fig. 4. Overview of DFT algorithm. 

 

 

Fig. 5. Configuration of correlations for a single harmonic, and 

configuration of buffers (the TimePeriodInfo signal) which is 

common for all harmonics 

 

 

Fig. 6. Evaluation of DFT correlations for the fundamental or a 

single harmonic 

 

The definite integrals are evaluated by subtracting the 

integrator output at a previous time, exactly one 

fundamental period in the past, from the most recent 

integrator output. The complications are that this time is 

generally not an integer multiple of the sample time Ts, and 

ADC 

(Sample 

Time Ts) 

Fundamental  

and RMS DFT 

analysis 

Optional 

downsampling 

to slower 

update rate 

 

Harmonic 1 

DFT analysis 

 

Harmonic Hmax 

DFT analysis 

 

Harmonic 2 

DFT analysis 

 

Configure 

buffers and  

integrators 

Cartesian to 

polar 

analysis 



Proceedings 2nd IMEKO TC 11 International Symposium METROLOGICAL INFRASTRUCTURE 

 June 15-17, 2011, Cavtat, Dubrovnik Riviera, Croatia 

that the integrator can tend to wind up. For this reason, not 

one but 3 buffers are required to evaluate each integral: two 

to form a pair of integrators operating in a tick-tock scheme, 

and a third to carry out the 1st-order linear interpolation to 

account for the ‘part sample’ effect (Fig. 7, Fig. 8, Fig. 9 and 

[8]). The tick-tock pair are operated with each integrator 

reset to zero once every few cycles, then left to acquire at 

least one full cycle of data and become valid, and then used 

until the other integrator path becomes valid. A 2-buffer 

variant is possible [8], but introduces a varying latency 

which may be undesirable in active control applications. 

 

 

Fig. 7. The procedure for performing exact-time averaging [8]. 

 

Since the analysis of every harmonic occurs over the 

same single-cycle period, every buffer is configured the 

same way, and this configuration, including a large part of 

the 1st-order interpolation calculations, only need to be 

carried out once for the entire set of harmonics, each frame, 

based upon the estimation of fundamental frequency. Thus, 

in Fig. 5, the block which generates the TimePeriodInfo 

signal only needs to be executed for the fundamental. The 

analyses for the higher harmonics re-use the same 

information. 

 

 

Fig. 8. Exact-time averaging code, showing twin integrators in 

tick-tock configuration, and the interpolation block. 

 

The output of the definite integrators form the complex 

values of the fundamental and harmonic components, which 

can then be related together and converted to 

amplitude/phase in a similar way to the FFT analysis. 

 

Fig. 9. Correction of the integral to interpolate between the oldest 

samples so that the integral is over exactly one fundamental period, 

using pre-calculated buffer and interpolation parameters which are 

shared with all harmonic analyses.  

 

By comparison with the FFT algorithm, the option exists 

to down-sample the final data before the final Cartesian to 

polar analysis, but apart from that, the entire algorithm must 

be executed at the sample time Ts. That having been said, 

while the FFT operation needs to examine the entire dataset 

every time it is executed, the beauty of the DFT algorithm 

using the rolling buffers is that only a tiny part of the 

Fourier Transform has to be calculated each time a new 

ADC sample arrives. Essentially, the DFT computation is 

spread evenly over a single fundamental period, and is 

continuously updated. 

 

In terms of data memory use, the DFT algorithm is 

relatively heavy. The requirement is 9 buffers for the 

fundamental (3 each for each sin() and cos() integral, and 3 

more can be used to allow evaluation of the overall RMS 

(Root-Mean-Square) and THD (Total Harmonic Distortion) 

figures), plus 6 buffers for each harmonic to be measured. 

The length of the buffers is (1/fmin/Ts+2), requiring 4 times 

this amount of bytes assuming 32-bit arithmetic is used.  

 

3. BENCHMARKING RESULTS 

 

The algorithms were initially benchmarked on the 

Infineon TC1796 microcontroller, in a similar manner to 

that described in [9]. Care was taken to incrementally add 

reference code (test signal generators) and then the main 

pieces of algorithm code, so that true execution times were 

measured. The times were measured using a toggled output 

line to indicate the beginning and end of the test algorithm, 

and a digital scope to measure the pulse widths. Multiple 

repetitions were used to increase the measurement accuracy, 

particularly for smaller algorithmic sections with short 

execution times. 

The first set of results (Fig. 10) show the execution times 

of the two methods (FFT and DFT) when required to 

measure the fundamental and harmonics up to (and 

including) a value Hmax which was varied between 1 to 40. 

In this analysis, the ADC sample time Ts varies with the 

required maximum harmonic by (1). Over-sampling m0 is 

set at 2. It is assumed that harmonics above the required 

measured set are attenuated in analogue filters to avoid 

aliasing effects. 

Some of the key parameters of the two algorithms during 

this test are shown in Table I, for a nominal value of 

f0=50 Hz. 
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TABLE I.  Parameters for flexible ADC sample-rate test 

Hmax = 

Harmonics 

To 

analyse 

1/Ts 

DFT 

buffer 

length 

(floats) 

NFFT 

FFT 

Sample 

rate 

(for f=f0) 

1 200 Hz 7 8 400 Hz 

5 1 kHz 27 32 1,6 kHz 

11 2,2 kHz 57 64 3,2 kHz 

21 4,2 kHz 107 128 6,4 kHz 

31 6,2 kHz 157 128 6,4 kHz 

40 8 kHz 202 256 12,8 kHz 

 

Fig. 10 shows the resulting execution times, which are 

also broken down for the FFT algorithm to show the times 

required for the actual FFT operation, and the cartesian to 

polar analysis. The re-sampling takes less than 0.9µs per 

frame. Two lines are shown for the DFT algorithms. These 

are optimistic and pessimistic values for the TC1796, and 

the variation occurs depending upon the RAM (random 

access memory) speed. When larger quantities of memory 

are being accessed quickly, it can take longer for each 

access due (presumably) to the lowered ability of the CPU 

to cache the active memory segments. The red dashed line 

shows the limit at which the algorithms cannot be executed 

on the TC1796 within the allowed frame time Ts without 

down-sampling at least part of the analysis. 

Fig. 10 shows that there is little to choose in execution 

time between the two methods. 

 

 

Fig. 10. Execution times on the TC1796. ADC sample rate set for 

2x over-sampling at the highest harmonic to analyse. 

 

Fig. 11 shows the data memory requirements of the two 

algorithms. Clearly, the DFT algorithm requires much more 

memory, which in this test rises as Hmax
2 due to both the 

number of buffers, and the buffer lengths, rising with Hmax. 

The required data memory for the FFT algorithm rises only 

with Hmax. For the TC1796 processor, the maximum 

contiguous RAM segment with fast access speed is 64kB, 

which constrained the actual DFT benchmarking 

experiments to Hmax<=21. The DFT results for Hmax>21 in 

Fig. 10 and Fig. 11 have been carefully calculated and 

extrapolated, as if more contiguous memory was genuinely 

available. 

 

Fig. 11. Data memory requirement. ADC sample rate set for 2x 

oversampling at the highest harmonic to analyse. 

 

Next, a similar test assumes that the ADC sample rate 

must remain fixed at 8 kHz to avoid aliasing, but that Hmax 

varies as before. In this case NFFT, the DFT buffer length, 

and the FFT sample rate, are all fixed at their values in the 

bottom row of Table I.  The resulting execution times are 

shown in Fig. 12. The DFT algorithm is clearly faster when 

only the low orders of harmonics need to be measured 

directly. 

 

 

Fig. 12. Execution times on the TC1796. ADC sample rate 8kHz. 

 

Finally, the analysis using variable ADC sample time 

(Table I) is repeated using the MVME5500 PowerPC card 

[12] using the MPC7457 processor [13], embedded with a 

VME rack system [14]. This card has 512MB of memory 

and a 512kB on-chip cache, and is easily capable of 

handling the data memory requirement of even the DFT 

analysis to the 40th harmonic and way beyond. The data 

memory requirement is doubled compared to Fig. 11, only 

because 64-bit arithmetic is applied by default by MATLAB 

for this target. The execution times (Fig. 13) are roughly 

40% of the TC1796 times, and the DFT analysis is shown to 

be more clearly favourable over the FFT analysis than in 

Fig. 10, probably due to the faster memory access of the 

MVME5500 and its ability to quickly access all the rolling 

buffers every frame. 
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Fig. 13. Execution times on the MVME5500. ADC sample rate set 

for 2x oversampling at the highest harmonic to analyse. 

 

4.  CONCLUSION 

 

While the FFT (Fast Fourier Transform) is generally 

regarded as the faster way to analyse waveforms than the 

DFT (Discrete Fourier Transform), it is found in this paper 

that in the application of electrical power systems, this is not 

always the case. Whereas intuition might lead to the 

suspicion that the DFT might be faster than the FFT at 

analysing small numbers of harmonics, but slower for 

analysing larger numbers of harmonics, in fact the DFT 

method can be competitive or faster than the FFT method 

for all numbers of harmonics. 

The time taken for the core of the FFT algorithm to be 

performed rises as NFFT*log2(NFFT) [11] where NFFT rises 

with the highest harmonic Hmax which needs to be analysed. 

In contrast, while the execution time of a classical DFT 

would rise with N*Hmax, where N is the number of DFT time 

points, in the presented algorithm the DFT only needs to 

perform part of the analysis every frame, and the analysis is 

spread out over many frames spanning one fundamental 

period. As a result, the execution time for the DFT 

algorithm only rises proportionately to Hmax. Therefore, the 

DFT algorithm actually gets faster and faster compared to 

the FFT algorithm as Hmax increases, by a factor of 

log2(Hmax). 

However, the memory requirement of the DFT algorithm 

is relatively large. While this is not an issue for some 

processors, for smaller microcontrollers the available 

memory may place hard limits on the number of harmonics 

which can be analysed, or the speed of the access to the 

wide memory segments may increase the execution time in a 

non-linear fashion. 

Both of these algorithms evaluate sampled data over 

exactly one fundamental cycle. Both of these algorithms, but 

particularly the DFT algorithm, are suitable for creating data 

outputs at update rates much higher than once per cycle, 

potentially at the full ADC sample time Ts, due to the 

algorithm structure. This produces fast-responding 

measurements which can be used for metering or active 

harmonic control applications. 
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