Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Methodology for testing loss of mains detection algorithms for microgrids and distributed generation using real-time power hardware-in-the-loop based technique

Crolla, P. and Roscoe, A.J. and Dysko, A. and Burt, G.M. (2011) Methodology for testing loss of mains detection algorithms for microgrids and distributed generation using real-time power hardware-in-the-loop based technique. In: Proceedings of the IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), 2011. IEEE, pp. 833-838. ISBN 978-1-61284-958-4

Full text not available in this repository. Request a copy from the Strathclyde author


The effective integration of distributed energy resources in distribution networks demands powerful simulation and test methods in order to determine both system and component behaviour, and understand their interaction. Unexpected disconnection of a significant volume of distributed generation (DG) could have potentially serious consequences for the wider power system, and this means DG sources can no longer be treated as purely negative load. This paper proposes a method of testing loss-of-mains (LOM) detection and protection schemes for distributed energy resources (DER) using realtime power hardware-in-the-loop (RT PHIL). The approach involves connecting the generator and interface under test (e.g. motor-generator set or inverter, controlled by an RTS – Real Time Station) to a real-time simulator (in this case an RTDS – Real Time Digital Simulator) which simulates the local loads and upstream power system. This arrangement allows observation of the interaction with other controls in the network beyond the local microgrid area. These LOM detection schemes are of increasing importance because with growing penetration levels of distributed generation the network operator has less visibility and control of the connected generation. Furthermore when the generation and load in a particular network area are closely matched (e.g. a grid-connected microgrid), it becomes increasingly difficult to detect a loss of grid supply at the generator. This work builds upon the existing LOM testing methodology developed previously for the Energy Networks Association in the United Kingdom. By utilising RT PHIL and a laboratory microgrid, the testing environment has been brought to a new level of functionality where system integrity can be more rigorously and realistically evaluated.