Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Use of orbiting reflectors to decrease the technological challenges of surviving the lunar night

Bewick, Russell and Sanchez Cuartielles, Joan-Pau and McInnes, Colin (2011) Use of orbiting reflectors to decrease the technological challenges of surviving the lunar night. In: 62nd International Astronautical Congress 2011, 2011-10-03 - 2011-10-07.

[img] PDF
McInnes_CR_Pure_Use_of_orbiting_reflectors..._technological_challenges_of_surviving_the_lunar_night_Oct_2011.pdf - Preprint

Download (1MB)

Abstract

In this paper the feasibility of using lunar reflectors to decrease the technological challenges of surviving the lunar night is investigated. This is achieved by attempting to find orbits in the two-body problem where the argument of periapsis is constantly Sun-pointing to maximise the time spent by the reflectors over the night-side of the Moon. Using these orbits the ability of reflectors of varying sizes to provide sufficient illumination to a target point on the surface is determined for scenarios where a latitude band is constantly illuminated and a scenario where a specific point is tracked. The optimum masses required for these far-term scenarios are large. However, a nearer-term scenario using low altitude orbits suggest that the effective duration of the lunar night can be reduced by up to 50% using a set of 300 parabolic reflectors of 100m radius with a total system mass of 370 tonnes. A system is also demonstrated that will allow a partial illumination of the craters in the Moon’s polar region for a mass up to 700kg.