Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation

Laurila, T. and Burns, I. S. and Hult, J. and Miller, J. H. and Kaminski, C. F. (2011) A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation. Applied Physics B: Lasers and Optics, 102 (2). pp. 271-278. ISSN 0946-2171

[img]
Preview
PDF (A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation)
CRDS.pdf - Final Published Version

Download (851kB) | Preview

Abstract

An efficient calibration method has been developed for broad-bandwidth cavity enhanced absorption spectroscopy. The calibration is performed using phase shift cavity ring-down spectroscopy, which is conveniently implemented through use of an acousto-optic tunable filter (AOTF). The AOTF permits a narrowband portion of the SC spectrum to be scanned over the full high-reflectivity bandwidth of the cavity mirrors. After calibration the AOTF is switched off and broad-bandwidth CEAS can be performed with the same light source without any loss of alignment to the set-up. We demonstrate the merits of the method by probing transitions of oxygen molecules O-2 and collisional pairs of oxygen molecules (O-2)(2) in the visible spectral range.