Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Automatic quantification and 3D visualisation of edema in cardiac MRI

Kushsairy Bin Abdul Kadir, K and Gao, Hao and Soraghan, John and Payne, Alex (2011) Automatic quantification and 3D visualisation of edema in cardiac MRI. In: Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC ’11). IEEE, Boston, USA, pp. 8021-8024.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Viability assessment of heart muscle after a myocardial infarction is an important step for diagnosis and therapy planning. It is important to quantify the area of edema because it can differentiate between viable and death myocardial tissues. In this paper an automatic method to quantify cardiac edema is presented. The method is based on a combination of morphological operations and statistical thresholding. Using real MRI data it is demonstrated that the proposed method can delineate edema region comparable to manual segmentation with a linear correlation coefficient r=0.76 and the mean difference is around 9.95%. The quantification result is also used to generate 3D visualisation model showing normal myocardial wall and edema region, which will enhance clinician diagnosis capability with real pattern of edema distribution and quantitative description.