Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Variational level set method with shape constraint and application to edema cardiac magnetic resonance image

Kadir, K. and Gao, Hao and Payne, A. and Soraghan, J. and Berry, C. (2011) Variational level set method with shape constraint and application to edema cardiac magnetic resonance image. In: Proceedings of the 17th International Conference on Digital Signal Processing (DSP), 2011. IEEE. ISBN 978-1-4577-0273-0

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Quantification of oedema area after acute myocardial infarction (MI) is very important in clinical prognosis for differentiating the viable and death myocardial tissues. In order to quantify oedema region, the first step is to segment the myocardial wall accurately. This paper applies variational level set method with shape constraint to oedema cardiac magnetic resonance (CMR) images. Shape information of the myocardial wall is introduced into the variational level set formulation, and the performance of the automatic method is tested on T2 weighted CMR images from 8 patients, and compared with manual analysis from two clinical experts. Results show that the proposed automatic segmentation framework can segment left ventricle (LV) boundary with no significant difference compared to manual segmentation.