Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Model-based analysis of protection system performance

Bell, S. and Mcarthur, Stephen and Mcdonald, James and Burt, Graeme and Mather, R and Cumming, T. (1998) Model-based analysis of protection system performance. IEE Proceedings Generation Transmission and Distribution, 145 (5). pp. 547-552. ISSN 1350-2360

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Following a power system fault, protection engineers have to analyse the protection scheme activity to ensure correct operation. To aid them in this task, data gathering systems are increasingly being fitted to power systems. However, during extreme operating conditions, the volume of data made available by these systems can be overwhelming. To help overcome this, knowledge-based systems have been developed and installed at ScottishPower's corporate headquarters to extract the relevant `information' from the supervisory control and data acquisition (SCADA) system `data'. The paper reports on the next stage of decision support for the protection engineers which builds upon the diagnosis provided by the knowledge-based systems. This enhanced support is provided by a model-based diagnostic system which provides automatic analysis of the available fault recorder data. This system utilises the most appropriate techniques employed by existing model-based diagnostic systems. A novel approach for handling tolerances associated with the operating times of protection scheme components is introduced, thus enabling modelling measurement inaccuracies to be dealt with