Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Absorption line profile recovery based on TDLS and MEMS micro-mirror for photoacoustic gas sensing

Li, Li and Arshad, Norhana and Stewart, George and Thursby, Graham and Uttamchandani, Deepak and Culshaw, Brian and Yang, YD (2011) Absorption line profile recovery based on TDLS and MEMS micro-mirror for photoacoustic gas sensing. Spectroscopy and Spectral Analysis, 31 (7). pp. 1814-1818.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A novel and efficient absorption line recovery technique is presented. A micro-electromechanical systems (MEMS) mirror driven by an electrothermal actuator is used to generate laser intensity modulation through the mirror reflection. Tunable diode laser spectroscopy (TDLS) and photoacoustic spectroscopy (PAS) are used to recover the target absorption line profile which is compared with the theoretical Voigt profile. The target gas is 0. 01% acetylene (C(2)H(2)) in a nitrogen host gas. The laser diode wavelength is swept across the P17 absorption line of acetylene at 1 535. 4 nm by a current ramp, and an erbium-doped fibre amplifier (EDFA) is used to enhance the optical intensity and increase the signal-to-noise ratio (SNR). A SNR of about 35 is obtained with 100 mW laser power from the EDFA. Good agreement is achieved between the experimental results and the theoretical simulation for the P17 absorption line profile.