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Abstract—Partial discharge (PD) monitoring is a key method of
tracking fault progression and degradation of insulation systems.
Recent research discovered that the harmonic regime experienced
by the plant also affects the partial discharge pattern, questioning
the conclusions about equipment health drawn from PD data.
This paper presents the design and creation of an on-line system
for harmonic circumstance monitoring of distribution cables,
using only PD data. Based on machine learning techniques, the
system can assess the prevalence of the 5th and 7th harmonic
orders over the monitoring period. This information is key for
asset managers to draw correct conclusions about the remaining
life of polymeric cable insulation, and prevent overestimation of
the degradation trend.

Index Terms—Monitoring, Dielectric breakdown, Partial dis-
charge, Power quality, Epoxy resin insulation, Power system
harmonics.

I. INTRODUCTION

CONDITION monitoring has the potential to pre-empt
catastrophic failure of plant by identifying insulation

degradation trends, thus allowing the planning of appropriate
maintenance and replacement. One approach is to monitor
partial discharge (PD) behavior, which allows the diagnosis
and tracking of defects through changes to the pattern of PD
activity. Recently it has been determined that power quality
can also affect PD behavior, questioning the conclusions drawn
about insulation health from field PD data captured when
power quality is unknown. A technique is needed to separate
power quality effects from insulation aging effects within the
data.

Defects in cable polymeric insulation weaken the insula-
tion’s dielectric strength favoring PD initiation. Sustained PD
activity may eventually lead to breakdown and is a common
progressive indicator of insulation health.

Over the years, much research has investigated the potential
for diagnosing defect types and tracking the degradation trend
using PD data. With an accurate analysis of the PD activity,
the progress towards full breakdown can be used to decide the
optimal time to remove the asset from service, maximizing
asset use while mitigating risk.

Particular harmonic orders, notably the 5th and 7th, can
occur in distribution networks with high enough amplitude
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to increase the peak voltage. Not only can this initiate PD
activity early and more rapidly age insulation systems, but the
distorted voltage waveform has been shown to influence the
PD pattern characteristics [1], [2]. Asset managers may be
attributing PD changes to fault progression, which may truly
be due to changes in the harmonic regime experienced by the
plant.

This paper describes the design and implementation of an
on-line system for harmonic circumstance monitoring of distri-
bution cables. Circumstance monitoring supplements condition
monitoring, which assesses the current state of health of the
plant. Specifically, this paper presents the training and testing
of machine learning techniques for identifying the presence
of the 5th and 7th harmonic orders purely from PD data. This
environmental information allows for a better understanding
of apparent trends in plant condition, and changes in the
operating environment can be separated from true changes in
plant health, ultimately giving a better estimate of the risk of
continued service.

The following two sections give background on harmonics
and PD, respectively. Section IV summarizes the methodology
for designing the harmonic monitoring system, followed by
sections on the selection of machine learning techniques,
experimental set-up and data capture, training of harmonic
order classifiers, and testing with new data. Section IX presents
the software design and implementation of a practical field
system for harmonic analysis using PD data. Finally, Section X
concludes the paper.

II. HARMONICS ON THE DISTRIBUTION NETWORK

Distribution companies have an interest in power quality,
and in particular in meeting the limits prescribed by various
national and international standards (e.g., IEEE 519, G5/4,
IEC 1000-2-2, IEC 1000-3-6). In recent years, as the number
and types of non-linear loads on the system have increased,
harmonic distortion has become more likely to occur [3].
Harmonics in distribution systems are primarily generated by
non-linear loads in end-user facilities, which act as harmonic
current sources injecting harmonic currents at their point
of connection. Harmonic sources include power electronic
devices, switch-mode power supplies, arcing devices such as
fluorescent lights, and saturable devices such as transformers
and rotating machines [4]. Such loads impact power quality in
densely-loaded and electrically weaker areas of the network.

Harmonics can be described as time domain occurrences
modeled as frequency components that are integer multiples of
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the fundamental power frequency (50 Hz or 60 Hz). Harmonic
pollution can be characterized using different attributes or
indices [3], such as:

• The harmonic orders present.
• The total harmonic distortion (THD), which is the ratio

of harmonic magnitude to the fundamental.
• Waveshape factor Ks, which is a measure of the steepness

of the derivative of the composite waveform.
• The magnitude of individual harmonic components.

The harmonic regime is dynamic, since it is caused by the
connection and disconnection of certain loads to the network.
Therefore quantification of harmonic pollution cannot be a
single assessment, but tends to examine average conditions
and dominant regimes, such as the 95% cumulative probability
level [5].

Some harmonic orders are of greater interest than others,
being particularly associated with certain devices, or partic-
ularly prevalent. Adjustable speed drives employing a six-
pulse rectifier are known to cause the 5th, 7th, 11th, and
13th harmonics, while those that use a twelve-pulse rectifier
produce the 11th, 13th, 23rd, and 25th [4]. Consequently, wind
farms have been linked to increases in the 5th and 7th order
harmonics [6]. Switched-mode power supplies are associated
with all odd harmonic orders from the 3rd to 15th [4]. Surveys
of networks in various countries show a predominance of the
5th harmonic [5], while the potential danger of large neutral
currents caused by the multiples-of-three triplen harmonics
make them a particular concern. Since the lower orders are
generally of greater amplitude than higher orders, the most
significant harmonics are considered to be the 5th and 7th [7].
THD of the voltage waveform is typically reported as between
1% and 6% [5].

A key problem with harmonic distortion of the source
voltage waveform is that it can increase both the peak voltage
and the voltage rate of change. This puts extra stress on equip-
ment insulation, leading to overheating and accelerated aging,
and this effect is hidden from the asset manager by lack of
knowledge of the harmonic regime. The impact of harmonics
on asset lifetime is only just beginning to be quantifiable,
with research investigating the relationship between harmonic
distortion and insulation degradation such as PD.

III. PARTIAL DISCHARGE

Partial discharge (PD) is a localized phenomenon caused
by weakening of the dielectric strength of insulation, allowing
charge to partially bridge the insulation gap between con-
ductors. PD is a symptom of degrading insulation health,
but also damages the insulation further, causing progressive
damage [8]. Different types of defects can cause PD, including
rolling particles and metallic protrusions in liquid or gaseous
insulation [9], as well as voids and electrical trees in solid
insulation, all of which can be introduced to the plant during
manufacture, commissioning, or over the life in service.

Monitoring of PD behavior can give information about the
current health of the insulation system. There can be two aims
of monitoring: identifying that PD is occurring; or diagnosing
the type of defect causing the PD. The first aim is somewhat

Fig. 1. Phase-resolved plot of PD activity and excitation voltage waveform.

simpler, and can be achieved using a handful of common
techniques, including dissolved gas analysis for transformers
[8] and acoustic monitoring [10]. This gives an indication of
whether the insulation has deterioration, but without diagnostic
information about the source of the PD it is difficult to define
a plan of maintenance to manage potential problems.

One tool employed for defect diagnosis is based on the
timing of discharges relative to their phase position on the
excitation voltage waveform. This requires high resolution
monitoring, techniques for which include radio frequency (RF)
monitoring of the plant [11] or substation [12]; or electrical
monitoring of apparent partial discharge, using the IEC 60270
technique [13]. PDs captured with these techniques are cross-
referenced with the voltage waveform to construct a phase-
resolved plot, illustrated in Fig. 1.

Different features of the phase-resolved pattern correspond
to different source defects [14]. This knowledge has been
exploited to produce intelligent systems for defect diagnosis,
starting with data-driven techniques such as neural networks
[15], k-means clustering and rule induction [16]; and more
recently in knowledge-based expert systems [17] and support
vector machines [18].

After diagnosing the cause of the PD, some quantification of
the severity and urgency of the problem is required. Increases
in the regularity and amplitude of discharges are generally
indicative of fault progression consistent with deterioration of
insulation integrity. Changes to the occurrence of discharges
relative to phase are generally ascribed to the manifestation
of a second defect, as the characteristics of the first defect
are unlikely to change. As a result, the rate of insulation
deterioration is gaged by the rate of change of discharge
amplitude or regularity of activity.

However, this assumes that the conditions experienced by
the item of plant are relatively constant, and specifically that
the excitation voltage is a pure power frequency, either 50 Hz
or 60 Hz. Recently it has been established that harmonics
present in the source voltage can influence the observed PD
pattern [1], [2]. As a result, it may be that changes to the
pattern of PD activity are due to variations in the harmonic
content of the voltage waveform, and not as previously as-
sumed due to fault progression.

To continue using PD analysis as a tool for insulation health
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assessment, the harmonic content of the voltage experienced
by the plant under study must be considered. Harmonic
monitoring equipment could be installed, but specialized units
may be considered too expensive for their limited storage
capabilities [5]. Since harmonics are expressed through the
PD data, data mining makes it possible to extract facets of
the harmonic regime experienced by the plant from the PD
data itself. This is an attractive solution, since no further
equipment is required for data capture; instead, further analysis
is performed on the data for circumstance and condition
monitoring.

IV. METHODOLOGY

Given the influence of harmonic pollution on the PD pattern,
asset managers are in need of a tool for assessing the harmonic
regime present. Condition monitoring technologies employ the
assumption that no harmonics are influencing the plant under
study, but knowledge of the harmonic circumstances would
help decide if changing PD activity is due to plant health or
harmonics.

The literature shows that the 5th and 7th harmonic orders
are likely to be most prevalent, with the potential to distort
the PD pattern. The aim of this work was to build a system
for identifying the presence of the 5th and 7th harmonics from
PD data, and report to engineers which harmonics occurred
during the monitoring period and how frequently.

The core of this system is two classifiers, one for identifying
each of the harmonic orders of interest, and a report generation
system for presenting statistics about the regimes experienced.

The next section discusses the choice of machine learning
technique for classification. In order to train the classifiers, ex-
perimental data had to be collected from defects in polymeric
insulation. The following sections describe the experimental
set-up, classifier training, and testing with fresh data. After
that, the end-to-end, on-line system is presented.

V. MACHINE LEARNING FOR HARMONIC ANALYSIS

There is a vast array of different machine learning tech-
niques available, from the widely known multi-layer percep-
tron (MLP) neural network to more esoteric types such as
Gaussian mixture models, K* clustering, and support vector
machines. These techniques have strengths and weaknesses for
different types of tasks, but one key differentiating factor is
whether a technique is for classification or regression; that is,
whether it can identify the class or group an instance belongs
to, or whether it is for estimating a function.

The application considered in this paper—recognition of the
5th and 7th harmonics—is classification. Previous work com-
pared the accuracy of the C4.5 rule induction technique and
support vector machines for these tasks, and found there was
no significant difference between the results [19]. This concurs
with other comparisons of classification for power systems
problems, such as that in [20]. For practical purposes, namely
the training time and amount of pre-training parameterization
required, the C4.5 algorithm was preferred.

The C4.5 technique is an example of a rule-induction
algorithm [21]. It is a supervised machine learning technique

which generates a decision tree for classification. Each node
in the tree is a rule derived from the training data set, leading
to leaf nodes that represent different classes. Once the tree is
trained, new data can be classified by traversing the tree.

The next section describes how data was collected for
training and testing C4.5 trees for the two classification tasks:
identifying the 5th and 7th harmonic orders.

VI. DATA COLLECTION

Electrical trees are a particularly damaging type of defect
affecting polymeric insulation. After tree initiation, PD activity
enhances electrical tree growth, eventually leading to insula-
tion breakdown.

Electrical tree samples were created in LY/HY5052 epoxy
resin with point-plane geometry, using 3µm radius conditioned
hypodermic needles with a 2mm insulation gap. These sam-
ples were subjected to various harmonic regimes, described
below, and the resulting PD activity recorded. For each PD, the
acquisition hardware captures apparent charge and excitation
waveform phase position. Discharges are collected as bursts
of activity (hereafter called PD burst or PD pattern).

The testing facility used for PD capture was previously
described in [22], and is summarized here. The raw PD data
was collected at a sampling rate of 5Msps over periodic
80ms windows of continuous capture. The PD instrumentation
system monitored and recorded electrical PD activity in accor-
dance with the IEC 60270 standard over the frequency range,
100kHz to 400kHz [13]. This system (Fig. 2) consisted
of a wideband balanced circuit and an amplifier bandpass
filter. This arrangement yielded a minimum detectable level of
5.5pC at a signal gain of 50pC/V . A 2nd order Chebyshev
filter characterized by higher roll off at the cut off frequencies,
relative to other filters including the Butterworth filter, was
incorporated. Design considerations for 0.01dB ripple were
selected to minimize characteristic ripples of the Chebyshev
filter near the cut off frequencies. A ±12V supply facilitated
increased sensitivity at increased signal gain after the amplifier
bandpass filter stage, capturing reduced magnitudes of PD.
However the trade off was the corresponding reduction in
pC range, as the constant power supply swing can result in
saturation of the PD phase-resolved plots. Variable signal gain
was implemented to mitigate this problem, facilitating manual
gain control as the PD magnitude increased.

Using this system, one data set was captured for training the
harmonic order classifiers, and another for testing purposes.
The test set was not used for training, making it a fair
challenge of the classifiers’ abilities.

Additionally, a third set of data was collected for testing.
This data was captured from a different type of defect: a void
(air bubble) in the insulation. A void behaves similarly to an
electric tree in producing PD, but it is not a progressive type
of fault. Void samples were created in epoxy resin, and data
collected using the same hardware as before. This data set
was intended to test the classifiers’ generalization capabilities,
investigating whether the classifiers can identify harmonic
attributes from PD data generated by a similar but different
type of defect.
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!
Fig. 2. Implemented balance circuit integrated with the amplifier filter stages.

TABLE I
SEVEN TEST WAVEFORMS EMPLOYED FOR THE CAPTURE OF DATASET 1

Waveform Composition + 50Hz
ID Harmonic Magnitude (%) φ THD (%)

number Order per Harmonic
1 3 40.0 0 40.0
7 1 0.0 0 0.0
8 5 5.0 0 5.0
9 7 5.0 0 5.0
11 7 17.8 0 17.8
12 5, 7, 11, 13, 23, 25 3.2 0 7.85
13 5, 7, 11, 13, 23, 25 2.0 0 5.0

A. Data capture

The first experiment aimed to capture data that could be
used to train the harmonic order classifiers. Samples were
exposed to excitation waveforms that were polluted with
different numbers and combinations of harmonic order, with
some variance of the THD.

Eleven samples containing electrical trees experienced seven
composite waveforms sequentially, described in Table I. Peak
voltage was constant at 10.8 or 14.4 kV, and the duration
of each waveform was 5 minutes or less. The sequence was
repeated, meaning that data capture lasted for a maximum of
(7 x 5) x 2 = 70 minutes per sample (see Fig. 3). The total set
of data comprises 7091 PD bursts, collectively termed Dataset
1.

Next, a second set of data was captured from different
samples. This was intended as a test set for the classifiers,
and therefore the conditions were varied from the previous
experiment. The waveforms listed in Table I were applied
individually to samples for up to 30 minutes, with a peak
voltage of 14.4 kV. Nine samples in total were used: one
sample for each of waves 1, 7, 8, 11, and 12; and two samples

each for waves 9 and 13, in order to capture approximately
equal numbers of PD bursts from each waveform (since waves
9 and 13 resulted in fewer PD bursts per sample, more samples
were required). The total number of PD patterns recorded was
9195, called Dataset 2.

Finally, a third data set was captured from void defect
samples. Since this set was also being used for test, conditions
were varied to exercise the classification capabilities. Fourteen
void samples experienced increasing levels of THD for one
minute intervals, following the sequence 0% (fundamental
only), 3%, 5%, 8%, 10%, 15%, and 18% THD. This sequence
was applied eight times, giving a capture time of (7 x 1) x 8 =
56 minutes per sample (see Fig. 3). Of the fourteen samples,
four were exposed to the fundamental and 5th harmonic only;
three were exposed to the fundamental and 7th harmonic only;
three experienced the fundamental, 5th, and 7th harmonics; and
four experienced the grouping of many harmonics, specifically
the 1st, 5th, 7th, 11th, 13th, 23rd, and 25th orders. In total, 9217
PD patterns were captured, forming Dataset 3.

B. Feature selection

The raw data associated with one burst of PD activity is
not very amenable to machine learning, due to its size and the
irregular number of discharges. A standard machine learning
approach is to transform raw data into a feature vector: a
list of pertinent features or attributes of the raw data, which
characterize the PD pattern. Not only does this reduce the size
of the dataset and hence reduce the computational complexity
of training a learning technique; it also helps avoid the “curse
of dimensionality” [23], a phenomenon where the performance
of a machine learning technique tends to degrade as the
dimensionality of the input data increases. Consequently, the
number of features chosen for the feature vector should be
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minimized, while giving enough detail to learn differences and
patterns associated with the task at hand.

Three broad types of PD pattern features were identified
from the literature through previous work [19]. The first
and most established are statistical features calculated from
the positive and negative voltage half-cycles, such as mean
pulse height, pulse count, and the number of peaks in pulse
amplitudes [15], [17]. Secondly, smaller phase windows can
be used for statistical calculations, namely mean, standard
deviation, and kurtosis of discharge amplitude calculated for
six equal-width windows [24], or mean calculated for 100
phase windows [18].

The third type of feature is the pattern descriptor, which
aims to mimic the way a human expert would view and
describe a PD pattern [25]. These features often take labelled
values, rather than being numeric, and identify pattern at-
tributes such as the phase position of discharges (e.g. ‘on
the zero-crossing points’ or ‘on the peaks’) and shape (e.g.
‘chopped sine’ or ‘knife blade’). These descriptors are calcu-
lated for each half cycle, then the half cycles are compared
for symmetry, giving up to three features per descriptor (e.g.
positive shape, negative shape, and shape symmetry).

Since this paper considers PD in the presence of harmonics,
which, to the best of our knowledge, has not previously
been investigated with machine learning techniques, these
reported feature vectors were not automatically assumed to
be appropriate to the task. One large feature vector containing
47 features drawn from all three types was defined, and a
parameter selection process was developed to identify the best
mixture of features for each of the two classification tasks.

Taking each classification task in turn, the 47 features were
ranked in order of their importance using the Information Gain

Ratio:

IGR(c, f) =
(H(c)−H(c|f))

H(f)
(1)

for a classification c, a feature f , and entropy H . Subsets were
selected from the top of this ranked list, and used to train C4.5
trees. The best subset, and hence the best feature vector, was
the set of features that gave the most accurate C4.5 tree. The
effect of this was to maximize the accuracy of the classification
while limiting the size of the feature vector at the same time.

The 47 features and the best subsets for classifying the
presence of the 5th harmonic and the presence of the 7th

harmonic are shown in Table II.

VII. CLASSIFIER TRAINING

After selecting appropriate parameters, C4.5 trees were
trained for identifying the presence of the 5th and 7th harmon-
ics. Trees were trained using 10-fold cross-validation, and the
accuracy results are reported below.

A. 5th harmonic

The first C4.5 tree is a binary classifier identifying the
presence or absence of the 5th harmonic. Trained using the
7091 patterns of Dataset 1, an accurate classifier should give
a positive response for data captured under waveforms 8, 12,
and 13; and a negative response for data from waveforms 1,
7, 9, and 11.

The C4.5 tree is 83.8% accurate at this task. The confusion
matrix is shown in Table III, where the diagonal corresponds
to accurate classifications. Deeper investigation reveals varying
error rates for different source waveforms (Table IV), with the
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TABLE II
47 FEATURES AND THE BEST SUBSET FOR EACH TASK

Feature name 5th 7th Feature name 5th 7th Feature name 5th 7th
Phase 0–60◦ mean X Phase 0–60◦ std. deviation X Phase 0–60◦ kurtosis
Phase 60◦–120◦ mean X X Phase 60◦–120◦ std. deviation X X Phase 60◦–120◦ kurtosis X
Phase 120◦–180◦ mean X X Phase 120◦–180◦ std. deviation X X Phase 120◦–180◦ kurtosis X X
Phase 180◦–240◦ mean Phase 180◦–240◦ std. deviation X X Phase 180◦–240◦ kurtosis
Phase 240◦–300◦ mean X X Phase 240◦–300◦ std. deviation X X Phase 240◦–300◦ kurtosis X
Phase 300◦–360◦ mean X Phase 300◦–360◦ std. deviation Phase 300◦–360◦ kurtosis X
Positive half mean X X Positive half std. deviation X X Positive half kurtosis
Negative half mean X X Negative half std. deviation Negative half kurtosis
Positive half bias Positive half inception phase X X Positive half extinction phase X X
Negative half bias X X Negative half inception X X Negative half extinction X X
Positive half distribution X X Positive half no. peaks in amplitude X X Positive half phase position X X
Negative half distribution X X Negative half no. peaks in amplitude X Negative half phase position X X
Positive half shape Positive half range X Positive half density X X
Negative half shape X Negative half range X Negative half density X X
Shape symmetry Range symmetry Density symmetry X X
Total PDs in burst X X Density ratio of half cycles X

TABLE III
PRESENCE OF THE 5TH HARMONIC CONFUSION MATRIX

Presence Classified as
False True

False 3482 577
True 570 2462

TABLE IV
ERRORS IN THE 5TH HARMONIC CLASSIFIER

Waveform # Description Misclassifications Percentage
1 No 5th 2 0.20%
7 No 5th 306 29.3%
9 No 5th 147 13.4%
11 No 5th 122 12.1%
8 5th only 201 19.7%
12 Multiple 163 16.0%
13 Multiple 206 19.4%

classifier highly accurate at identifying the absence of the 5th

harmonic from waveform 1, but least accurate at identifying
its absence from waveform 7.

B. 7th harmonic

Identifying the presence of the 7th harmonic is also a
binary classification task. Trained using Dataset 1, an accurate
classifier would identify its presence from data captured under
waveforms 9, 11, 12, and 13; and give a negative response to
data from waveforms 1, 7, and 8.

This C4.5 tree is 90.9% accurate (confusion matrix in Ta-
ble V). Considering accuracy by source waveform (Table VI),
this tree appears most accurate at the higher THD levels of
waves 1 and 11, then 9 and 12, and least certain on the lower
THD levels of 7, 8, and 13.

TABLE V
PRESENCE OF THE 7TH HARMONIC CONFUSION MATRIX

Presence Classified as
False True

False 2680 326
True 322 3763

TABLE VI
ERRORS IN THE 7TH HARMONIC CLASSIFIER

Waveform # Description Misclassifications Percentage
1 No 7th 12 1.20%
7 No 7th 194 18.6%
8 No 7th 120 11.8%
9 7th only 89 8.14%

11 7th only 19 1.89%
12 Multiple 70 6.87%
13 Multiple 144 13.5%

VIII. TEST

The training process described in the previous section
resulted in two classifiers for harmonic orders. This section
presents the accuracy of testing with Datasets 2 and 3. It
should be noted that “accuracy” can result from a positive
or negative identification by the classifier. For example, data
captured in the presence of the 5th harmonic and fundamental
only would be accurately classified in the following cases:

• If the 5th harmonic classifier gives a positive response (5th

is present, classifier says 5th is present),
• If the 7th harmonic classifier gives a negative response

(7th is not present, classifier says 7th is not present).
In all cases, classifier accuracy would ideally tend towards

100%.

A. Dataset 2: Electrical trees

As described in Section VI, a second dataset was captured
from electrical tree samples and a different experimental
regime from the training data set. The aim was to assess the
capabilities of the classifiers when applied to blind data that
had not been seen by the classifiers before. The results are
shown in Fig. 4.

The 5th harmonic classifier performs well overall, at 69.18%
accuracy. The graph shows the highest accuracy for waveform
1, meaning that 96% of the time this classifier correctly said
there was no 5th harmonic present. The lowest accuracy was on
waveform 12, where the classifier was no better than chance at
saying the 5th harmonic was present in amongst the grouping
of many harmonic orders.



IEEE TRANSACTIONS ON POWER DELIVERY, VOL. X, NO. Y, NOVEMBER 200X 7

 0

 20

 40

 60

 80

 100

5th harmonic 7th harmonic

Pe
rc

en
ta

ge
 a

cc
ur

ac
y

Classifier task

Classifier accuracy for tree samples

Waveform 1
Waveform 7
Waveform 8
Waveform 9

Waveform 11
Waveform 12
Waveform 13

Average

Fig. 4. Accuracy of classifiers on Dataset 2, split by test waveform.

Considering the 7th harmonic classifier, the overall perfor-
mance was more modest at 58.92% average accuracy. The
classifier was good at saying the 7th harmonic was absent
from waves 1 and 8, and good at saying the 7th was present
in wave 13, but less accurate than a random guess on waves
7, 9, and 12. Interestingly, waves 12 and 13 have the same
grouping of harmonic orders but different THD levels, and
the classifier finds it significantly more easy to work with
the lower THD data of wave 13. This is rather surprising, as
engineering intuition suggests the features of each harmonic
order would be more dominant at higher levels of distortion.
However, a similar relationship exists with waves 9 and 11,
and in this case it is the higher-THD wave 11 that is more
easily classified.

In short, these results suggest that the harmonic order
classifiers generalize well to Dataset 3. Both have average
accuracies below their cross-validation accuracies, but above
the levels of chance that would indicate the results were noise.
This is the expected behavior of a well-trained classifier.

B. Dataset 3: Voids

The third set of data was intended to stretch the classifiers
further, by applying them to data generated by a different type
of defect from the training data. If the classifiers performed
well on this data, we could be reasonably sure that they had
truly learned how harmonic attributes are expressed in PD
data; whereas if they performed poorly, it may be due to
differences between the patterns generated by void and tree
defects. The results are shown in Fig. 5.

The 5th harmonic classifier is poor on average, with 40.81%
accuracy. However, this figure hides high accuracy at identi-
fying the absence of the 5th harmonic from the fundamental
and 7th polluted waveforms. Countering this is extremely low
accuracy at identifying the presence of the 5th in groupings
of harmonic orders. This contrasts with the electrical tree
data results, where moderate to high accuracy was seen on
groupings of harmonics. Overall it seems this classifier has
significant difficulties with some of the void data.
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Fig. 5. Accuracy of classifiers on Dataset 3, split by test waveform.

However, the 7th harmonic classifier performs better on
average, with 66.83% accuracy. It gives good results at iden-
tifying the presence of the 7th harmonic, either in groups of
other orders or with the fundamental alone, which is in line
with the electrical tree data results. It performs most poorly
at identifying the absence of the 7th from the fundamental
waveform, which is also the case for the electrical tree data.
The only discrepancy is in identifying the absence of the 7th

from the waveform polluted by the 5th only, with chance results
on the void data but high accuracy on the electrical trees.

In short, the 5th harmonic seems to present itself in the void
data differently from the electrical tree data, as the average
accuracies show discrepancy between the two test data sets.
However, the 7th harmonic appears to present in largely the
same way in PD data from both types of defect, as the
average accuracies differ by less than 10%. In both cases, the
classifiers show good accuracy at identifying harmonics from
PD generated by electrical trees.

IX. ON-LINE SYSTEM

Given the successful training and testing of classifiers
described above, an on-line system was created to perform
harmonic analysis from PD in the field. This section discusses
some of the design choices made to create such a system.

The classifiers operate on a single PD pattern, deciding if the
5th or 7th harmonics are present based on an 80ms snapshot of
activity. In practice, PD monitoring takes place over a period
of time, so there is no need to restrict an on-line system to
consider only one pattern.

Indeed, the harmonic regime is also variable over time
with the connection and disconnection of particular loads. An
on-line system for harmonic circumstance monitoring should
collect information on the trends of different harmonics, pre-
senting asset managers with a report on the changing regimes
experienced over the period of monitoring.

Additionally, some of the uncertainty of the classifier output
can be mitigated by aggregating statistics about the dominant
regimes. Various strategies for combining multiple PD patterns
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Fig. 6. Accuracy of the classifiers on individual PD patterns, and on groups of three, five, and seven patterns for the training data set.

for classification were considered in [26], with the most prac-
tical being to use simple majority voting among a sequence
of PD patterns. For example, if three PD patterns are captured
under waveform 1 conditions, two of which are classified as
no 5th harmonic while one is classified with 5th harmonic, then
the majority opinion is that the 5th harmonic is not present.
The aggregated output of these classification would be that the
5th harmonic was not present during the monitoring period.

Aggregating multiple patterns can be shown to improve
classifier accuracy (see Figs. 6(a) and 6(b)). The training
data was grouped into batches of three sequential patterns,
five sequential patterns, and seven sequential patterns. These
batches were classified by the two harmonic order C4.5 trees,
and simple majority voting used to determine the final output
for each batch. The results of this indicate that accuracy
increases with the number of patterns included in the voting.
For identification of the 5th harmonic, accuracy increases from
83.8% when considering individual patterns to 93.9% for
groups of seven. For the 7th harmonic, accuracy increases from
90.9% for individual patterns to 98.2% for seven in a row.

While this may suggest majority voting on the entire
set of captured PD patterns, this would only identify one
dominant regime over the monitoring period. The connection
and disconnection of loads can change the harmonic regime
rapidly, but this new regime may occur frequently enough
to influence many PD patterns. The number of patterns to
aggregate becomes a trade-off between the desire for reduction
in uncertainty versus the level of detail about the regimes
experienced.

The on-line system was built to incorporate the two C4.5
classifiers, aggregation of multiple patterns, and a system for
reporting on the harmonic regimes. It stores the aggregated
statistics in a database for long term archival, and presents
summary and detailed reports to the engineer as needed.

X. CONCLUSIONS

Since recent research identified the effects of harmonic
pollution on PD data, a tool is needed for asset managers to

determine the harmonic circumstances being experienced by
items of plant. This extra information can prevent insulation
fault progression from being overestimated. This paper pre-
sented the design of components needed to create a system for
harmonic circumstance monitoring, identifying the presence of
the most prevalent and concerning 5th and 7th harmonics, and
the frequency with which they appear on the network.

The system comprises two C4.5 decision trees, one for
each of the harmonic orders of interest. The classifications
of these trees are aggregated over multiple PD patterns during
the period of monitoring, and a report generated about the
dominant regimes of that time.

This system could be extended over time to contain more
classifiers to identify other harmonic attributes. Preliminary
work has been done on assessing the THD [27], but initial test
results were surprisingly poor for some defect samples while
extremely accurate for others. Further research is needed to
understand the pattern of THD classifications, before it can
become part of the overall system.

Based on the results reported here, the system as built
is ready to be deployed in the field alongside regular PD
monitoring, giving engineers a better picture of the true health
of polymeric cable insulation.
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