Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

A novel, biodegradable and reversible polyelectrolyte platform for topical-colonic delivery of pentosan polysulphate

Shah, Hardik K and Conkie, Jim A and Tait, Robert C and Johnson, James R and Wilson, Clive G (2011) A novel, biodegradable and reversible polyelectrolyte platform for topical-colonic delivery of pentosan polysulphate. International Journal of Pharmaceutics, 404 (1-2). pp. 124-132.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The goal of the present work was to develop a swellable hydrogel colonic delivery system, which would maximise the availability of the therapeutic agent at a site of inflammation, especially where the water is scarce. A novel method was developed to manufacture a biodegradable and reversible polyelectrolyte complex (PEC) containing chitosan and poly acrylic-acid (PAA). The PEC was analysed using FTIR and DSC, which confirmed the formation of non-permanent swollen gel-network at an alkaline pH. Pentosan polysulphate (PPS) was incorporated in a PEC and an activated partial thromboplastin time assay was developed to measure the release of PPS from PEC. In vitro studies suggested that the release of PPS was dependent on the initial drug loading and the composition of the PEC. The gel strength of the swollen network, determined using a texture analyser, was dependent on polymer composition and the amount of PPS incorporated. Bacterial enzymes were collected from the rat caecum and colon for the digestion studies and characterised for glucosidase activity, glucuronidase activity and protein content. The digestion of the reversible polyelectrolyte complexes was measured using a dinitro salicylic acid assay and an increased release of drug was also confirmed in the presence of bacterial enzymes.