Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A novel, biodegradable and reversible polyelectrolyte platform for topical-colonic delivery of pentosan polysulphate

Shah, Hardik K and Conkie, Jim A and Tait, Robert C and Johnson, James R and Wilson, Clive G (2011) A novel, biodegradable and reversible polyelectrolyte platform for topical-colonic delivery of pentosan polysulphate. International Journal of Pharmaceutics, 404 (1-2). pp. 124-132.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The goal of the present work was to develop a swellable hydrogel colonic delivery system, which would maximise the availability of the therapeutic agent at a site of inflammation, especially where the water is scarce. A novel method was developed to manufacture a biodegradable and reversible polyelectrolyte complex (PEC) containing chitosan and poly acrylic-acid (PAA). The PEC was analysed using FTIR and DSC, which confirmed the formation of non-permanent swollen gel-network at an alkaline pH. Pentosan polysulphate (PPS) was incorporated in a PEC and an activated partial thromboplastin time assay was developed to measure the release of PPS from PEC. In vitro studies suggested that the release of PPS was dependent on the initial drug loading and the composition of the PEC. The gel strength of the swollen network, determined using a texture analyser, was dependent on polymer composition and the amount of PPS incorporated. Bacterial enzymes were collected from the rat caecum and colon for the digestion studies and characterised for glucosidase activity, glucuronidase activity and protein content. The digestion of the reversible polyelectrolyte complexes was measured using a dinitro salicylic acid assay and an increased release of drug was also confirmed in the presence of bacterial enzymes.