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The use of high-energy X-ray total scattering coupled with pair

distribution function analysis produces unique structural fingerprints

from amorphous and nanostructured phases of the pharmaceuticals

carbamazepine and indomethacin. The advantages of such facility-

based experiments over laboratory-based ones are discussed and the

technique is illustrated with the characterisation of a melt-quenched

sample of carbamazepine as a nanocrystalline (4.5 nm domain

diameter) version of form III.
The majority of active pharmaceutical ingredients (APIs) are mar-

keted as crystalline forms for reasons of stability. However, the

formation, stability and performance of amorphous solids are also of

significant interest within pharmaceutical research and development.

Whilst the amorphous state can confer desirable properties to an

API, such as increased aqueous solubility,1 the inadvertent produc-

tion of non-crystalline material during processing can also lead to

uncontrolled variability in physical and chemical attributes. The

potential for commercial exploitation of amorphous APIs is often

complicated by their tendency to revert to a more thermodynamically

favourable, and less soluble, crystalline state. Although the identifi-

cation, characterisation and quantification of amorphous pharma-

ceuticals has received considerable attention, little is known about

local ordering in amorphous APIs due to the lack of reliable exper-

imental probes. The powerful tools of crystallography begin to lose

their power for structures on the nanoscale; conventional X-ray

powder diffraction (XRPD) patterns become broad and featureless in

these cases (Fig. 1) and are not useful for differentiating between

different local molecular packing arrangements.2 Accordingly,

XRPD is generally used simply to identify such samples as non-

crystalline (i.e. ‘X-ray amorphous’).

It has recently been suggested that Fourier transforming conven-

tional laboratory XRPD data‡ to obtain the atomic distribution

function (PDF)3,4 allows more structural information to be extrac-

ted.5 The PDF, G(r), yields the probability of finding an atom at

a distance r from any reference atom and so provides information on
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local structure in real space. However, this approach is intrinsically

limited by the relatively low momentum transfer magnitude Q

(4psinq/l) values typically accessible in the laboratory environment,

resulting in a PDF of limited real-space resolution. For an accurate

PDF across a wide range of r, data should be collected with low

instrumental background and good counting statistics to high Q.

These requirements can be met by combining high-energy

(synchrotron) X-rays with imaging plate detectors.

In this work, a high-energy XRPD method known as total scat-

tering,3 coupled with Fourier transformation and PDF analysis, is

applied to individual X-ray amorphous samplesx of the anti-epileptic

drug carbamazepine (CBZ; Fig. 1) and the non-steroidal anti-

inflammatory drug indomethacin (IND). This approach is referred to

as the total scattering pair distribution function (TSPDF) method to

differentiate it from the approach of obtaining the PDF from

conventional laboratory XRPD data.5 The TSPDF method has been

widely applied to inorganic materials to study amorphous structures6

and more recently crystalline and nanocrystalline systems,3,7 but its

application to molecular systems has to date been very limited.

Total scattering data were collected{ from melt-quenched samples

of CBZ and IND as well as polycrystalline samples of CBZ I and III8

and a9 and g10 IND. The short wavelength used (0.137 �A), combined

with an appropriate data collection strategy enables data to be

recorded over a sufficiently high Q-range to provide the necessary

resolution in real-space for quantitative structural analysis to be
Fig. 1 Molecular structures and laboratory Cu Ka1 XRPD patterns for

X-ray amorphous melt-quenched samples of CBZ (top) and IND

(bottom).
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Fig. 3 Comparison of TSPDF from the melt-quenched amorphous

sample (green) and CBZ III (blue), modified as if it were a 4.5 nm

nanoparticle (see text for details). PolySNAP correlation coefficient

0.8601.
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attempted. In these data, a useable Qmax ¼ 20 �A�1 was achieved,

equating to a real-space resolution of 0.31 �A. Further processing was

carried out on all data sets to obtain the total scattering reduced

structure function, F(Q), and the TSPDF, G(r), using the program

PDFgetX2.11 A summary of data processing steps is provided as

ESI.† The total scattering data, presented as F(Q), and the resultant

TSPDFs for the amorphous and polycrystalline samples of CBZ are

shown in Fig. 2.

F(Q) for the melt-quenched sample (Fig. 2(b)), measured over

a wide enough range of momentum transfer and properly normalized

(see ESI),† is rich in information content compared to a conventional

laboratory-based XRPD measurement (e.g. Fig. 1). Close inspection

shows no clear Bragg diffraction, confirming a lack of long-range

order in the sample. F(Q) clearly distinguishes the polycrystalline

samples CBZ III and I (Fig. 2(a) and (c), respectively) with the melt-

quenched sample showing a closer resemblance to that of CBZ III

than CBZ I.

Transforming F(Q) to G(r) (i.e. the TSPDF; see ESI)† allows

interpretation and comparison to be carried out in real space. There is

a striking resemblance between the TSPDF of CBZ III and the melt-

quenched sample. Full-profile comparisons of the TSPDFs in the

range dominated by inter-molecular interactions, 3–20 �A, for the

three samples using PolySNAP12 yielded a correlation co-efficient of

0.8389 for the melt-quenched and CBZ III TSPDFs (perfect match¼
1.0; see ESI).† The next closest similarity was observed for melt-

quenched CBZ and form I, but yielding a correlation coefficient of

only 0.5164.

Given such close agreement between the melt-quenched and form

III TSPDFs, the structural similarity between these samples was

explored in more detail. The TSPDF of CBZ-III was modified by

attenuating the TSPDF peaks in the high-r region to simulate the

effects of reducing the range of structural coherence (or long range

ordering) on the data, assuming spherical particles. If the internal

atomic arrangement of a nanocrystalline domain resembles that of

a bulk crystalline analog, its TSPDF resembles that of the bulk except

that the amplitude of the TSPDF peaks is attenuated with increasing

r due to the loss of far-neighbour correlations outside the particle.

This can be modelled by multiplying the crystalline PDF with the

auto-correlation of the shape function of the particle as done here (see

ESI).†
Fig. 2 Total scattering diffraction patterns and TSPDFs of CBZ. Panels

(a) and (d) correspond to CBZ III, (b) and (e) to the melt-quenched

sample and (c) and (f) to CBZ I; (a), (b), (c) show the total scattering data

in the form of F(Q) (see ESI)† whilst (d), (e), (f) are in the form of the

TSPDF, G(r).

This journal is ª The Royal Society of Chemistry 2010
The overlay shown in Fig. 3 was obtained using a nanocrystalline

domain diameter of 4.5 nm. The excellent agreement between the

attenuated TSPDF from CBZ III and the melt-quenched CBZ

TSPDF is definitive proof that the local packing in the melt-quenched

sample is that of form III with a range of structural coherence of

4.5 nm. It is interesting to ask whether the sample is made up of

discrete 4.5 nm nanocrystallites of form III or whether it is truly

a homogeneous amorphous structure with short-range molecular

CBZ III-like packing. The data suggest the former since the sharpness

of features in the TSPDFs is preserved with increasing r whilst their

amplitude is simply reduced, which is not the behaviour seen in truly

amorphous samples. We thus conclude that the structure of the melt-

quenched CBZ used in the measurement is actually nanocrystalline

CBZ III with an average particle diameter of 4.5 nm. Although the

TSPDF of the melt-quenched sample is well explained by CBZ III

attenuated by the PDF characteristic function for a sphere, we cannot

rule out that there is a dispersion of nanoparticle sizes centered

around the value of 4.5 nm. For example, narrow dispersions with

�10% polydispersity are well explained using the characteristic

function for a single sphere.

A similar analysis has also been carried out on a melt-quenched

sample of IND, and the results are shown in Fig. 4. Again, F(Q)

shows the melt-quenched IND sample to be X-ray amorphous (no

evident Bragg diffraction) and rich in structural information. The

highest correlation coefficient from full-profile comparisons of the

TSPDFs of melt-quenched, a and g IND in PolySNAP was 0.6770,

returned for the melt-quenched and a-IND phases. This is signifi-

cantly lower than the highest value obtained for the CBZ TSPDF

comparisons. All other coefficients were less than 0.5 (ESI).† Thus,

the TSPDFs indicate that the local structure of the melt-quenched

IND sample at 100 K is largely distinct from the a and g crystalline

forms. This contrasts with the suggestion based on crystallization and

spectroscopic evidence that below Tg (315 K13) amorphous IND has

a local structure, with dimeric hydrogen bonding, similar to the g

form.14 Linear combinations of the a and g crystalline phases also do

not give good agreement with the TSPDF from the melt-quenched

sample. Further comparisons with the d form of IND were not

possible at the time of writing as neither a crystal structure nor

experimental TSPDF were available.15 However, this result clearly

shows that the TSPDF can readily characterise distinct local molec-

ular packing arrangements in the amorphous IND sample. We note
CrystEngComm, 2010, 12, 1366–1368 | 1367
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Fig. 4 Total scattering diffraction patterns and TSPDFs of IND

samples. (a) and (d), contain patterns from IND a, (b) and (e) from the

melt-quenched sample and (c) and (f), IND g. The column (a), (b), (c)

shows the synchrotron total scattering data in the form of F(Q) and the

second column, (d), (e), (f), contains the total scattering data in the form

of the TSPDF, G(r).

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

St
ra

th
cl

yd
e 

on
 3

0 
O

ct
ob

er
 2

01
2

Pu
bl

is
he

d 
on

 1
9 

O
ct

ob
er

 2
00

9 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/B

91
54

53
A

View Online
that, as with the CBZ, oscillations in the PDF are apparent over the

whole r-range shown and clearly extend beyond 20 �A, which shows

that the melt-quenched IND sample we studied is also nanocrystal-

line rather than truly amorphous.

The key to obtaining useful TSPDF curves is not the use of

synchrotron radiation per se but collecting data to high Q with good

statistics. This is possible from laboratory based diffractometers that

have Ag (l¼ 0.556 �A) or Mo (l¼ 0.7107 �A) sources, where the fact

that l is a factor of �2–3 times smaller than that of a Cu source

means that higher Q values can be accessed for any given diffraction

angle. The current data were Fourier transformed with a Qmax of

20 �A�1, which is certainly accessible with a Ag lab diffractometer,

although a suitably configured Mo instrument would offer significant

practical advantages such as higher incident flux, increased X-ray

scattering and higher detector efficiency. That said, synchrotron

measurements are advantageous because the requisite statistics can be

obtained over the whole Q-range in a short time (in this case 30 min)

compared to many hours on a laboratory-based source. Future

developments in high intensity, short wavelength laboratory X-ray

sources will certainly help close this particular gap.

These results have a number of important implications. They show

that TSPDF data can be used to unambiguously differentiate

between different forms of amorphous or nanocrystalline molecular

solids. As such, TSPDF is an approach that can take the ‘finger-

printing’ role for amorphous pharmaceuticals that XRPD takes for

polycrystalline pharmaceuticals. This opens the door to future studies

exploring the effects of processing or storage on amorphous materials

and of phase stability in molecular dispersions, for example. There

can also be sufficient information in the TSPDF to enable the fitting

of well-defined structural models for the molecular conformation and
1368 | CrystEngComm, 2010, 12, 1366–1368
packing arrangements in amorphous and nanocrystalline samples.

Clearly this would have particular application in the case of the melt-

quenched IND TSPDF presented here, however the development of

such models is beyond the scope of the current work. This capability

offers the potential to revolutionise the study of amorphous samples,

by illuminating the basic science underpinning the structure of non-

crystalline molecular materials to add to the wealth of thermody-

namic and spectroscopic literature available. Also, by tracking the

evolution of structure of melt-quenched glasses for example, this tool

may help identify new crystalline polymorphs via an amorphous or

nanocrystalline route.
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preparation see ESI.†

{ Data were collected at 100 K at beamline 11ID-B at the Advanced
Photon Source (APS) using the rapid acquisition PDF method.
Samples were sealed in 1 mm diameter Kapton capillaries and irradiated
with X-rays of wavelength l ¼ 0.1370 �A. A large area 2D image plate
detector (MAR345) was placed centered on and perpendicular to the
incident beam 198 mm behind the sample. Sufficient statistics in the high
Q-range were obtained using multiple exposures of the image plate,
exposing for 300 s, between 5 and 8 times for each data point. The
separate exposures were summed together before further processing,
resulting in an integrated exposure time of 30 min per sample. 1D powder
diffraction patterns were obtained by integrating around the Scherrer
rings on the image plate images, correcting for beam polarization effects
using the program Fit2D. Data were collected to Q¼ 31 �A�1 and Fourier
transformed using data to 20 �A�1 to generate TSPDFs to r ¼ 30 �A.
Further details in ESI.†
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