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ABSTRACT
When several incompatible implementations of a single API
are in use in a Java program, the danger exists that in-
stances from different implementations may inadvertently
be mixed, leading to errors. In this paper we show how to
use generics to prevent such mixing. The core idea of the
approach is to add a type parameter to the interfaces of the
API, and tie the classes that make up an implementation
to a unique choice of type parameter. In this way methods
of the API can only be invoked with arguments that belong
to the same implementation. We show that the presence
of a type parameter in the interfaces does not violate the
principle of interface-based programming: clients can still
completely abstract over the choice of implementation. In
addition, we demonstrate how code can be reused between
different implementations, how implementations can be de-
fined as extensions of other implementations, and how differ-
ent implementations may be mixed in a controlled and safe
manner. To explore the feasibility of the approach, gauge
its usability, and identify any issues that may crop up in
practical usage, we have refactored a fairly large existing
API-based application suite, and we report on the experi-
ence gained in the process.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Object-oriented Languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Polymorphism,
Abstract Data Types

General Terms
Programming languages, Theory, Verification

Keywords
Interface-based programming, Generics, Family Polymor-
phism, Programming patterns
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1. INTRODUCTION
Large systems are typically built from components that in-

teract through application programming interfaces (APIs).
The virtues of interface-based programming are well recog-
nized. To name just a few: reduced complexity of individual
components, looser coupling between components, improved
testability, the potential to exploit multiple implementations
in different domains, etc. In Java, an API is expressed as
a set of interfaces, and implementations of the API are sets
of classes implementing the interfaces. We call an API com-
plex when there are interdependencies between the different
interfaces. In other words, when interfaces of the API define
methods with parameter or return types that are one of the
other interfaces of the API.

Often APIs just offer a window on the underlying sys-
tem, and classes that make up an implementation are not
expected to solely rely on the interface for internal interac-
tion. This mean that implementation classes typically have
dependencies upon each other above and beyond those vis-
ible in the interfaces of the API. These encapsulated depen-
dencies may be on functionality that is not exposed by the
API, on hidden shared state, or even on semantic properties
of the implementation of certain methods that can not be
captured through an interface. As a consequence, different
implementations of an API may not be compatible with each
other, and objects from different implementations can —and
should— not be mixed, or errors may ensue. The potential
for such mixing is what we call the complex API problem.

It is important to point out that errors due to mixing
are not normally caught at compile-time by the type sys-
tem. Consider the example introduced in Fig. 1. The in-
terfaces IButton and IIcon may have a number of different
implementations. For example, one suitable for the Win-
dows platform and another targeted at the Mac OS plat-
form. A Windows-specific button may not behave correctly
when used with a Mac OS-specific icon. However, all imple-
mentations of the icon interface are subtypes of IIcon, so it
is always possible to invoke the setIcon method with any
of them, irrespective of which implementation of buttons is
in use.

IButton b = new WinButton();

IIcon i = new MacIcon();

b.setIcon(i); //run-time error

So, although interface-based programming enables client
code to be oblivious to the choice of implementation, ap-
plications may depend on consistent usage of one such im-
plementation, and this invariant needs to be maintained in
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setIcon(in icon: IIcon): void
getIcon(): IIcon

IButton
isShaded(): boolean

IIcon

WinButton

MacButton

WinIcon

MacIcon

API

Impl 1

Impl 2

Figure 1: Example API and its Implementations

the face of evolution whereby new implementations are in-
jected into an application over time. Furthermore, some
applications may wish to use different implementations of a
single API at the same time, yet need to keep incompatible
data flows apart. An example of such an application is the
Concern Manipulation Environment(CME) [8]. This envi-
ronment is an open-ended suite of tools that makes heavy
use of plug-ins implementing a number of complex APIs.
One of those, the Concern Information Tool API (CIT), is
similar to the Java Reflection API —except that Java Reflec-
tion is characterized by classes and abstract classes (rather
than interfaces), and therefore unsuitable for use in defining
a plug-in component. The CIT API has implementations
to handle class files, Java source files, and UML diagrams;
each with internal encapsulated dependencies. Other CME
components that construct concern models use these CIT
implementations to extract information from different kinds
of artefacts. Some of these components use different kinds
of artefacts at the same time, and hence run the danger of
accidentally passing an instance of one implementation to a
method of an object that belongs to a different implemen-
tation.

In this paper, we propose a practical solution based on
standard Java generics, that prevents mixing errors at compile-
time. The core idea is to add a type parameter to the in-
terfaces of the API, and tie the classes making up an im-
plementation to a type parameter that uniquely identifies
the implementation. In this way, methods of an API can
only be invoked with arguments that belong to the same
implementation of the API, and attempts at mixing of ob-
jects from different implementations are flagged statically.
In terms of the example of Fig. 1, this means that —subject
to properly structured class implementations— we would be
told at compile-time that we used Mac icons with Windows
buttons, even when we type their denotations at the level of
the interfaces IButton and IIcon.

The technique proposed can be readily applied, and the
bulk of the discussion in this paper is concerned with inves-
tigating how the technique can be aligned with the practice
of Java programming (Sec. 2–Sec. 4). Among others, we
demonstrate how to write implementation-agnostic clients
(Sec. 3.1), how to achieve controlled mixing of implementa-
tions (Sec. 3.2), how to reuse code between implementations
(Sec. 4.1), and how to maintain substitutability for imple-
mentations defined in terms of existing implementations —
which we call sub-implementations (Sec. 4.2). We also detail
a case study that we have undertaken to explore the feasi-

bility of the technique we propose (Sec. 5). We end the pa-
per with a discussion of the relative merits of our approach
(Sec. 6) and related work (Sec. 7), before summarizing our
conclusions (Sec. 8).

2. ENFORCING CONSISTENT API USAGE

2.1 General Approach
As indicated above, our approach to prevent mixing ob-

jects from different implementations revolves around adding
a type parameter to the interfaces of an API. When the API
is complex, this type parameter shows up at all the interde-
pendent parameter and return types of methods in the inter-
faces. The type system can then enforce that arguments to
a method have the same type instantiation as the receiving
object. When type instantiations uniquely identify imple-
mentations, objects from different implementations can not
be mixed. Consider again the example in Fig. 1 of buttons
and their icons. The parameterized interfaces would take
the following form:

interface IButton<IMPL> {

void setIcon(IIcon<IMPL> icon);

IIcon<IMPL> getIcon();

}

interface IIcon<IMPL> {

boolean isShaded();

}

Note in particular how the types of the icon parameter of
the setIcon and return value of the getIcon method are
bound by the type parameter of the IButton interface.

Implementations of an API need to instantiate the type
parameter to a particular type. The main requirement is
that all the classes that make up an implementation do so
with respect to the same type. What type is being used
for this purpose is of secondary importance. It can be any
type, as long as it is used consistently. We call the instanti-
ation type for an implementation its implementation token,
as it shows up as the type parameter in client code. It is
important to note that the association between implemen-
tation classes and implementation tokens is managed by the
provider of an implementation, and that this happens with-
out feedback of the type system. We will come back to this
issue later in the paper. One possible choice of implemen-
tation token is an empty interface defined especially for the
purpose. A simple implementation of the above API may
then look, in skeleton, as follows:

interface Win {}; //implementation token

class WinButton implements IButton<Win> {

IIcon<Win> getIcon() {...}

void setIcon(IIcon<Win> icon) {...}

}

class WinIcon implements IIcon<Win> {

boolean isShaded() {...}

}

Clients programming against the parameterized API are now
prevented from invoking methods with objects from incom-
patible implementations: attempts to invoke the setIcon

method on a Windows button with a Macintosh icon as ar-
gument yield a compile-time error:
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setIcon(in icon: IIcon<IMPL>): void
getIcon(): IIcon<IMPL>

IButton
IMPL

setIcon(in icon: IIcon<IMPL>): void
getIcon(): IIcon<IMPL>

WButton
IMPL

createButton(): Button<IMPL>
WinFactory

createButton(): Button<IMPL>
IFactory

IMPL

<<bind>>IMPL:WinFactory

isShaded(): boolean
IIcon

IMPL

isShaded(): boolean
WIcon

IMPL

API

Impl 1

Figure 2: Implementation using abstract factory pattern

IButton<Win> b = new WinButton();

IIcon<Mac> i = new MacIcon();

b.setIcon(i); //compile-time error

Note how we use type parameters in an atypical way to
distinguish incompatible implementations of the same in-
terface. Normally, type parameters are used to abstract
away differences among types, to code uniformly against the
widest possible set of values without giving up type safety.
For example, collections are parameterized in the type of
their elements so that one can write code that works against
collections of different types of values. Here, in effect, we use
type parameters to mark types, so we can keep their values
apart.

2.2 Using Factories
Applications often use creational patterns [7] to abstract

over more complex object instantiation scenarios. In partic-
ular, the Abstract Factory pattern can be used to establish
an instantiation protocol that concrete factories may adopt
to return objects of different implementations. By applying
the technique to such factories, one can statically guaran-
tee that they return a consistent set of objects (e.g. across
different methods of a factory). Additionally, client code is
prevented from mixing objects from different (incompatible)
factories. With respect to the running example, the abstract
factory would be expressed as an additional interface in the
API:

interface IFactory<IMPL> {

IButton<IMPL> createButton();

IIcon<IMPL> createIcon();

}

Concrete factories implement the above interface by instan-
tiating the type parameter and returning instances of classes
from corresponding implementations. Note the threading
of the type parameter through the return types of creation
methods, which makes returning an instance of an incom-
patible implementation a type error.

Fig. 2 shows how an implementation including factories
could be structured. Note in particular, that in this case
we have chosen to do the type instantiation at the point
of object instantiation in the factory —rather than in the
class definition; and that we have used the the factory class
itself as the implementation token. Using the concrete fac-
tory as implementation token saves us introducing an empty
interface. Due to its pragmatic nature, it is this pattern of

implementation that we have used in the case study that we
discuss in Sec. 5. Client code creates or obtains a factory
once, and relies on it to generate objects that can be used
together. In this way, the client code can avoid naming the
implementation classes it relies upon:

IFactory<WinFactory> f = new WinFactory();

IButton<WinFactory> wb = f.createButton();

IIcon<Winfactory> wi = f.createIcon();

wb.setIcon(wi); // guaranteed to be ok

2.3 Implementation-side Guarantees
The absence of mixing between different implementations

may be exploited in implementation classes. In particu-
lar, it is clear that under the scheme, methods may make
stronger assumptions on their inputs than the ones adver-
tised in parameter types. For example, the inputs to the
setIcon method of the WinButton class defined in Sec. 2.1
are guaranteed to be instances of the WinIcon class. The
method may depend on this fact, either implicitly, for be-
havioural properties, or explicitly, to access features of the
class that are hidden behind the interface, without fearing
that its assumptions may be violated. For example, casts in
this context are guaranteed to succeed, and hence need not
be guarded with exception handling:

class WinButton implements IButton<Win> {

void setIcon(IIcon<Win> i) {

...(WinIcon)i... // cast guaranteed to succeed

} ... }

3. GENERIC CLIENTS
In client code as shown in Sec. 2, implementation tokens

appear manifest in the program text. For example, by look-
ing at the types of the variables b and i, we see that b refers
to an instance of the Windows-based implementation of but-
ton, while i refers to a Mac icon. This enables the type
checker to spot when we attempt to mix implementations
inappropriately. However, it may give the impression that
our technique inherently violates the principle of interface-
based programming that it sets out to support. This is not
the case: we can effectively abstract over implementation
tokens to write code that does not depend on the exact
choice of implementation. The main tools to achieve this
are generic methods, which use type parameters to make
implementation tokens abstract, and wildcards, which offer
a form of subtyping for parameterized types.
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3.1 Implementation-Agnostic Clients
Generic methods may be made applicable to any imple-

mentation by taking the implementation token as a type
parameter. For example, the method m, shown below, can
be invoked with any implementation of the IButton inter-
face, irrespective of its implementation token, and returns an
icon of the same implementation. The main method shows
a particular invocation using a Windows button.

class GenericClient {

<IMPL> IIcon<IMPL> m(IButton<IMPL> b) {

// code uses abstract implementation token

}

void main() {

IButton<Win> wb = new WinButton();

IIcon<Win> wi = m(wb);

}

}

In the body of m, the implementation token is abstract,
only known as IMPL. This makes the code in the body of
m implementation-agnostic, and hence reusable against any
implementation. However, the implementation token needs
to be known to caller of the method. This may, of course,
be a generic method itself, deferring the issue. But ulti-
mately the call chain needs to be grounded in a context
where the concrete implementation token is known. When
we are aiming to maximize the amount of implementation-
agnostic manipulation, this often is the point of creation of
a value. Here, wildcards come to the rescue.

Wildcards offer a form of subtyping for parameterized
types [16]. In general, two different instantiations of a generic
class C are not related through subtyping. However, the
wildcarded type C〈?〉 is a supertype of any type instantia-
tion of C. This means that variables typed with a wildcard
can be bound to values of any implementation. In the fol-
lowing code, the variable wb, could hold an object of either
Windows- or Mac-based implementations. Typing a button
with a wildcard does not necessarily prevent it from being
passed into a generic method for further implementation-
agnostic processing. This is possible because of a process
known as wildcard capture (cf. [16], Sec. 3.2). It means that
we may still invoke m with wb, despite not knowing the im-
plementation of the value bound to wb.

IButton<?> wb = new WinButton();

IIcon<?> wi = m(wb); // wildcard capture

The problem with wildcards is that by hiding the implemen-
tation token, interaction between values of the same imple-
mentation may be hindered. Wildcard capture may miti-
gate this problem somewhat, but is subject to certain limi-
tations. For example, a method that takes two parameters
of the same implementation can not be invoked by relying
on wildcard capture, as different wildcards, for reasons of
soundness, are always assumed to be of incompatible types.
Similarly, relations between input types and return types are
lost. For example, on invoking m with wb, it is ‘forgotten’
that the result is of the same implementation as the input.
This means that, with respect to the above assignments, the
following, although sound, would not be allowed:

wb.setIcon(wi); // not allowed

A way of avoiding these limitations, is to bundle value
creation into factories, typed by wildcards on their creation,
and then, using wildcard capture, inject these factories into
classes that are parameterized in their implementation to-
kens. Such a pattern can be used to achieve clients that are
entirely agnostic to the choice of implementation, i.e. that
contain no manifest occurrences of specific implementation
tokens. The pattern, which we demonstrate by example
below, is somewhat evocative of the kind of approach ad-
vocated in so-called dependency injection frameworks [9].
In essence, such frameworks separate application code from
choice of implementation by injecting a reflectively instan-
tiated factory (or any other configurable ‘dependency’) into
an application.

The example code contains two classes: GC, a generic client
that is entirely agnostic of the choice of implementation, and
DI, which contains static methods to reflectively instantiate
a concrete factory based on some input string fname, and
inject it into a new instance of GC. The generic client class
is parameterized in a single implementation token, and re-
ceives a factory bound to that implementation token on in-
stantiation. The client creation process initiated in DI relies
on the method createGC, which performs wildcard capture
on the implementation token of the reflectively instantiated
factory, before instantiating GC with the captured implemen-
tation token.

public class GC<IMPL> { ...

GC(IFactory<IMPL> f) { this.f = f; }

...

<IMPL> IIcon<IMPL> m(IButton<IMPL> b) { ... }

public void main() { ... }

}

public class DI {

static <T> GC<T> createGC(IFactory<T> f) {

return new GC<T>(f);

}

static IFactory<?> createF(String fname) {

return (IFactory<?>)

Class.forName(fname).newInstance();

}

static GC<?> init(String fname) {

return createGC(createF(fname));

}

static void run() {

GC<?> c = init(...);

c.main(); // start client

}

}

3.2 Dynamic Clients
Up to this point, we have only been concerned with to-

tally preventing any mixing of implementations. However,
there are situations where one can be more permissive: some
methods may not depend on encapsulated dependencies, and
hence may safely mix inputs from different implementations.
In these cases, we may use wildcards to type method param-
eters, and such methods may then be invoked with any com-
bination of different implementations of the corresponding
interfaces.

Considering that a similar effect can be obtained using
generic methods with multiple type parameters, a more per-
tinent use of wildcards may be to type collections containing
objects from different implementations:
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List<IButton<?>> bs = ...

bs.add(new WinButton());

bs.add(new MacButton());

The process at work with wildcards is normal subtyping.
Once the type parameter is abstracted over, some operations
may not be applicable, and the value may not be passed into
a context that requires a specific implementation. With sub-
typing between non-generic classes, if specific knowledge is
needed after it has been abstracted a way, a cast may be used
to dynamically reassert additional type information. How-
ever, Java implements generics using erasure, which does
not give a run-time representation to type parameters. This
means that casting from a wildcard to a specific implemen-
tation token, although allowed, makes little sense, as it will
never fail.

IButton<?> mb = new MacButton();

IButton<Win> wb = (IButton<Win>)mb; // never fails

Of course, using reflection, objects can be interrogated for
the class of which they are an instance. However, relying on
this information instead of implementation tokens implies
that clients would need intimate knowledge of the specific
classes that make up a particular implementation of an API.
It would be better if it were possible to offer a way to dy-
namically query what implementation an object belongs to
in terms of implementation tokens. One reasonable way to
achieve this would be to add a method to all APIs that sup-
ports such querying. Assuming that such a method is called
getToken, one could use the following code to identify all
the buttons in a heterogeneous list of buttons, which have a
shaded icon, and which belong to the same implementation
as the first button in the list:

for ( IButton<?> b : bs )

if (b.getToken() == bs.get(0).getToken()

&& b.getIcon().isShaded())

...

Alternatively, one may use such a method as a semantically
sound guard before a cast:

if ( mb.getToken() instanceof Win )

wb = (IButton<Win>)mb;

3.3 Raw Clients
A final way to program uniformly against any implementa-

tion of an API is to ignore the parameterization altogether,
i.e. use the API raw [10]. This removes the burden im-
posed on a client by a parameterized API, but, of course,
also its benefit. Manipulation of the API is unconstrained
again, like in the pre-parameterized version, and equally un-
safe. The possibility of having raw clients makes that the
technique becomes pay-as-you-go for client programs. Sim-
ple clients of an API, for which guaranteeing the absence
of mixing is trivial, may ignore the parameterization, while
more complex clients of the same API may instead rely on it
to get the feedback of the type system on mixing invariants.

4. IMPLEMENTATION-SIDE CODE REUSE

4.1 Code Reuse across Implementations
Code from classes such as WinButton that are part of an

implementation can not be reused in classes from a different
implementation because their type parameter is already in-
stantiated. Any subclass would inherit the type parameter
too, making it, by definition, part of the original implemen-
tation, and hence mixing of instances would be allowed1.
To achieve code reuse across implementations, one needs to
separate the definition of implementation code from the as-
sociation of that code to a particular implementation —its
type instantiation. We have already shown an example of
this in Fig. 2, where the type instantiation was done in the
factory, and the implementation classes were left uninstanti-
ated. As a consequence, these classes can be inherited from,
without subclasses becoming part of the implementation of
their superclasses.

To maximise code reuse, we suggest a pattern whereby
code that is intended to be reused across implementations is
factored out in uninstantiated classes. One can then achieve
code reuse by inheriting from these classes. Type instan-
tiation can either happen on-the-fly, e.g. in factories, or,
when non-reusable implementation-specific code is desired,
on derivation into a class that is statically associated with
a particular implementation. Hierarchies may even contain
nodes that are only there for code reuse, and are not part of
a particular implementation. For example, one could easily
imagine that the Windows-based and Mac-based implemen-
tations of buttons may share an (abstract) common super-
class. Fig. 3 shows a hierarchy of implementation classes of
the IButton interface that observes the pattern we describe.
The classes AButton, WButton and MButton define reusable
code, and presumably contain the bulk of the implementa-
tion code. The leaf node WinButton ties down its implemen-
tation token, and hence can only contain code specific to the
implementation it has committed to.

setIcon(in icon: IIcon<IMPL>): void
getIcon(): IIcon<IMPL>

IButton
IMPL

setIcon(in icon: IIcon<IMPL>): void
getIcon(): IIcon<IMPL>

AButton
IMPL

WinButton

<<bind>>IMPL:Win

setIcon(in icon: IIcon<IMPL>): void
getIcon(): IIcon<IMPL>

MButton
IMPL

setIcon(in icon: IIcon<IMPL>): void
getIcon(): IIcon<IMPL>

WButton
IMPL

Figure 3: Class organization that facilitates code
reuse across implementations

1Note that this in itself need not be a problem: one can
imagine implementations of an API that have different
classes of the same interface which are designed to be mixed.
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4.2 Sub-implementations
Often implementations may be written as extensions of

other implementations. In these cases, the extended im-
plementation may still satisfy the encapsulated dependen-
cies assumed by the base implementation. We would like to
be able to pass objects from the extended implementation
into code that expects objects from the base implementa-
tion. In other words, we want to introduce the ability to
mix objects from related implementations—albeit one-way,
from extended implementations to base implementations,
and not the other way around. Note that, even though the
sub-implementation may well be derived from the base im-
plementation by inheritance, just passing objects from sub-
implementations into methods that expect objects from base
implementations does not work: different type instantiations
of otherwise related classes are never subtypes of each other.
In other words, D〈Y 〉 is never a subtype of C〈X〉, even when
D is a subtype of C and Y is a a subtype of X.

However, we can achieve the kind of substitutability that
we are after by changing the signature of methods in the
API to include bounds. For example, the setIcon method
of the IButton interface may be made into a generic method
whose parameter is bounded by the implementation token
of the interface. In this way, the method can be invoked not
only with objects from the same implementation, but also
with objects from sub-implementations.

interface IButton<IMPL> {

<I extends IMPL> void setIcon(IIcon<I> icon);

}

Of course, for this to work, implementation tokens of related
implementations need to form a hierarchy. This makes it im-
possible to use of concrete factory classes as implementation
tokens, because concrete factories tie down their implemen-
tation token, and hence are not subtypes of each other. Also,
when using sub-implementations, classes needs to be care-
ful when being specific in their dependency on other classes
of their implementation. Consider the classes in the hier-
archy of Fig. 4. We said before that methods of the class
WinButton may depend on the fact that they will be invoked
with objects coming from the same implementation. How-
ever, if the setIcon method in WinButton were to cast to
WinIcon (assumed to be part of the same implementation,
but not shown in Fig. 4), this cast may fail when the method
is invoked with an instance of the class ExtWinIcon which
is part of a sub-implementation. These classes, although
possibly sharing most of their code, are not related to each
other through subtyping or (direct) inheritance. To avoid
this problem, dependencies should only exist between unin-
stantiated classes, where sub-implementations align with in-
heritance hierarchies. The problem is in part mitigated by
the fact that the API advertises when sub-implementations
may be provided and when not.

5. CASE STUDY
To establish the workability of the approach, and investi-

gate issues that may arise in its application, we refactored a
number of APIs and their implementations that form part
of the Concern Manipulation Environment(CME) [8]. In
particular, we have applied our approach to two APIs called
CIT and CAT —the Concern Information Tool and Concern
Assembly Tool. The CAT API is supported by a framework,

WinButton

<<bind>>IMPL:Win

Win

setIcon(in icon: IIcon<IMPL>): void
getIcon(): IIcon<IMPL>

WButton
IMPL

void setIcon(IIcon<IMPL>
void extra(EWButton b)

EWButton
IMPL

ExtendedWinButton

<<bind>>IMPL:EWin

EWin

Figure 4: A Hierarchy with Sub-implementations

which was used in the implementation of several simple and
several substantial CATs. The CIT API has some frame-
work and utility support, and several substantial implemen-
tations. The CME components and API definitions that we
selected for refactoring consist of 250 classes and interfaces,
comprising about 44Kloc. An overview of them can be found
in Table 1.

The refactoring process was performed on an API by API
basis. First adding the type parameter to the interfaces, and
then following the compiler diagnostics to identify the places
in the implementations and clients where changes were re-
quired. We used many of the techniques outlined above,
but avoided the ones that would have required to restruc-
ture code. Most client code has been made independent of
concrete implementation tokens. This was helped by the
fact that creational dependencies of the client on specific
implementations had already been wrapped into abstract
factories in the original application. Because of the pres-
ence of factories, we used them as implementation tokens,
avoiding the introduction of new interfaces for this. There
was typically only a need to deal with objects from one
implementation at any one time, so mostly only a single
type parameter was needed in generic methods or classes.
However, one component that dealt with composition, po-
tentially involving simultaneous creation of several output
forms, was required to keep apart objects from up to five
different CAT implementations. Another component, act-
ing as a ‘coupler’ or ‘splitter’ for CAT, passes API calls to
objects from several different implementations. The bulk of
the code for the implementations of the CIT and CAT APIs
is located in supporting frameworks. We did not use wild-
cards in the parameterization of the APIs, but some static
helper methods in these supporting frameworks were found
to be most appropriately typed using wildcards. We did not
use sub-implementations or bounds on API methods in our
application.

As an aside, we found the refactoring process itself rela-
tively straightforward, and we believe it could be facilitated
further through a mechanical refactoring tool that would
only need guidance on how permissive methods ought to
be in admitting different implementations (whether to use
wildcards or bounds as type parameters).
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Characterization #classes/ interfaces
Concern Information Tool API 28
Concern Assembly Tool API 22
CIT framework and utilities 39
CAT framework 154
Four small CAT implementations: serializer, trace, mini, connectors 72
CIT/CAT implementation for Java class files 89

Table 1: CME Components that were Refactored

The case study also highlighted a number of general issues
with the integration of generics into Java that may come up
when parameterizing an API. For example, some of the APIs
that we refactored declared exceptions as part of their proto-
col. However, exceptions in Java can not be parameterized.
The reason for this is that exceptions need to derive from the
abstract class Throwable which itself is not parameterized.
This means that exceptions-based control flow may receive
less help from the type checker regarding mixing than nor-
mal control flow. Another issue that cropped up was the
fact that Java disallows the use of type parameterization for
static variables. This prevents constants (final static vari-
ables) from holding objects related to a parameterized API
(unless used raw). Finally, the use of arrays to hold objects
related to an API may also sometimes be complicated due
to the parameterization. A discussion of the reasons for this
is out of scope; we refer the interested reader to [1], Sec.7.3.
Of course, the aforementioned issues all relate to the general
use of generics in Java, and are not specific to our proposed
technique.

In conclusion: although the technique that we propose
is invasive because of the proliferation of type parameters
throughout application code, the case study seems to demon-
strate that the technique is feasible in practice, and can scale
up to real application scenarios.

6. DISCUSSION
In this section, we turn to an informal cost-benefit anal-

ysis of our technique with respect to the standard non-
parameterized solution. The main benefit, in fact, the pur-
pose of the technique is to statically prevent programs from
mixing incompatible API implementations. Of course, when
this aspect of a program is trivially assured, the help of the
type checker is of little benefit. On the other hand, when
multiple data streams need to be kept apart, or the cre-
ation process is complex and/or subject to frequent evolu-
tion, static feedback may yield significant advantages.

We must note that for our technique to yield proper static
feedback, implementation tokens must uniquely identify im-
plementations. Classes are associated with implementation
tokens through type instantiation, but such instantiation
bears no relationship to, or is not constrained by the en-
capsulated dependencies. This means that we may get it
wrong, and when we do get it wrong, the type system does
not warn us. For example, we may mistakenly associate the
Win implementation token to a class providing an implemen-
tation for Macintosh buttons. If we do so, our technique will,
in fact, ensure that we will always mix it with with instances
that it can not handle, rather than prevent any such mixing.

Of course, getting it wrong means an implementer got
confused on what classes make up its implementation. And
when this happens, there are likely to be more errors in the

implementation, such as casts to incompatible classes, or
functional dependencies that are not being met. The prob-
lem may be mitigated by adopting design practices that aim
to make it as clear as possible what makes up an imple-
mentation. For example, one may simply separate differ-
ent implementations into different packages (making inter-
implementation references show up as import statements).
Additionally, one may move type instantiation outside the
context of ordinary computation by doing it solely in class
definitions, and making all parameterized classes abstract
(discouraging instantiation inside factories).

Ultimately, by using implementation tokens to abstractly
denote implementations, our technique provides a compro-
mise between safety —preventing mixing for consistently de-
fined implementations— and usability —the use of a single
type parameter independent of the size or nature of the im-
plementation. We believe this compromise to be pragmati-
cally useful.

On the cost side, we need to mention the proliferation of
type parameters showing up in code that uses APIs. As de-
tailed above, we have undertaken a fairly large case study
to gauge the practical impact of this issue. From it, we con-
clude that the syntactic overhead does not impede its ap-
plication. In fact, tagging code with implementation tokens
may make it clearer where in a program different implemen-
tations may interact.

It is also worth mentioning that our technique does not
impose a run-time overhead, as implementation tokens exist
only at compile-time due to the way generics is implemented
in Java (by erasure). Of course, interface-based program-
ming itself comes at a cost for method invocations compared
to invocations of static methods or class methods.

Finally, as we have explained at length, a number of tech-
niques can be used to minimize the loss of flexibility in-
duced by parameterizing interfaces. For example, methods
that do not depend on encapsulated dependencies can type
their parameters with wildcards. Similarly, the ability to use
sub-implementations relies on methods using type bounds.
However, such changes to method signatures must be made
in the API, and can not be adopted by individual imple-
mentations. This means that the ‘permissiveness’ of method
inputs needs to be decided up-front and adopted uniformly
by all implementations.

7. RELATED WORK
How to use complex APIs without mixing their imple-

mentations is a pragmatically important take on a well-
known problem in the study of object-oriented languages.
As usual, the tension is between static safety —which re-
quires as detailed type information as possible— and ex-
pressiveness —which requires as abstract type information
as possible. Subtyping is one of the mechanisms normally
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employed to mitigate this tension, as it can hide type in-
formation from the typechecker. Unfortunately, when ap-
plied näıvely to interface-based programming, it compro-
mises type safety by hiding the co-occurrence constraints
of implementations (i.e. thei encapsulated dependencies).

One does not need a complex API to witness the prob-
lem; a single type that refers to itself, i.e. has some binary
method, is sufficient to bring it out [4, 2]. However, com-
plex APIs require more general solutions, and the literature
adopts the term family polymorphism2 for the problem that
deals with interdependent types. In this line of work, the
term family corresponds to what we called an API imple-
mentation, and top-level families define APIs.

A plethora of different approaches have been proposed to
tackle the problem of family polymorphism. All restrict the
use of subtyping between individual members of a family.
There are approaches based on virtual types [3, 5, 13, 6],
path-dependent types [12, 15], and various forms of extended
inheritance [11, 14], to mention just a few. To the best of our
knowledge, none of these approaches is directly applicable to
Java —or any other mainstream class-based object-oriented
language— without language extensions. In contrast, we
propose an approach that is directly deployable, and aligns
well with current software engineering practice.

One way to constrain subtyping, and restore the safety
of interface-based programming, without resorting to a lan-
guage extension, is to use generics. The overall idea is to
use type parameters to abstract over the types of an API
implementation, rather than partially hiding them from the
typechecker. In Java, generics can be reconciled with sub-
typing —using wildcard— to overcome some of the limita-
tions that have been attributed to such a solution [5]. In our
approach, we denote implementations abstractly through an
implementation token, yielding a single type parameter for
any size of family. A more straightforward application of
generics in this context, would yield classes that are param-
eterized recursively on all the other classes of their family.
However, this proliferation of type parameters would mark
a significant increase in complexity for both clients and im-
plementers, making it effectively impossible to apply to fam-
ilies comprising of more than a few classes. Additionally, it
would prevent modular extension of the APIs, as such ex-
tension would imply that all type definitions be extended
with extra parameters. It is here that our unconventional
usage of generics shines, as for trading in a limited amount of
safety (cf. Sect. 6), we bring the technique within the realm
of practical applicability.

8. CONCLUSIONS
In this paper we have presented a simple technique to

prevent mixing of incompatible implementations of a single
API. The approach is based on an idiomatic use of generics.
The core idea is to add a type parameter to the interfaces
of an API, and tie the classes that make up an implemen-
tation to the a particular choice of type parameter, which
we call an implementation token. In this way methods of
the API can only be invoked with arguments that belong
to the same implementation, so that mixing of objects from
different implementations is statically flagged.

2The term was first used in [5], where did not denote the
problem, but the proposed solution.

We have explained how to apply the technique and demon-
strated it through a simple example. We have addressed
the concern that the type parameter used in our approach
may prevent interface-based programming: most client code
can abstract over the choice of implementation by becom-
ing generic, while creational dependencies can be wrapped
inside abstract factories and typed with wildcards. We have
also shown how it is possible to provide for code reuse be-
tween implementations, and discussed different techniques
for controlled and safe mixing of implementations by using
wildcards and bounds.

Finally, we have discussed a case study that we have un-
dertaken in order to investigate the feasibility of our tech-
nique and gauge its usability in practice. Based on this, we
believe that our approach does not pose too much effort to
be useful in practice, and that is not too complex to be un-
derstood by an average programmer. In fact, we believe for
some limited syntactic overhead in the form of type parame-
ters, the technique provides a good degree of early feedback
on errors that are potentially hard to find, and makes it eas-
ier to spot how and where different implementations may
interact.
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