Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Tuning of the product spectrum of vanillyl-alcohol oxidase by medium engineering

van den Heuvel, R.H.H. and Partridge, J. and Laane, C. and Halling, P.J. and van Berkel, W.J.H. (2001) Tuning of the product spectrum of vanillyl-alcohol oxidase by medium engineering. FEBS Letters, 503 (2-3). pp. 213-216. ISSN 0014-5793

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The flavoenzyme vanillyl-alcohol oxidase (VAO) catalyzes the conversion of 4-alkylphenols through the initial formation of p-quinone methide intermediates. These electrophilic species are stereospecifically attacked by water to yield (R)-1-(4'- hydroxyphenyl) alcohols or rearranged in a competing reaction to 1-(4'-hydroxyphenyl)alkenes. Here, we show that the product spectrum of VAO can be controlled by medium engineering. When the enzymatic conversion of 4-propylphenol was performed in organic solvent, the concentration of the alcohol decreased and the concentration of the cis-alkene, but not the trans-alkene, increased. This change in selectivity occurred in both toluene and acetonitrile and was dependent on the water activity of the reaction medium. A similar shift in alcohol/cis-alkene product ratio was observed when the VAO-mediated conversion of 4- propylphenol was performed in the presence of monovalent anions that bind specifically near the enzyme active site. (C) 2001 Federation of European Biochemical Societies.