
23Analysis and Fast Implementation ofOversampled Modulated Filter BanksStephan WeissDept. Ele
troni
s & Computer S
ien
e, University of Southampton, UKAbstra
t. Oversampled modulated �lter banks (OSFBs) are popularly employed fora number of appli
ations su
h as a
ousti
 e
ho 
an
ellation in order to redu
e the pro-
essing 
omplexity of a signal pro
essing algorithm. Hen
e, an eÆ
ient implementationof OSFBs themselves is mandatory. In this paper, a polyphase des
ription is used toremove redundan
ies in the �lter operations and to fa
torise the OSFB into �lter 
om-ponents depending on the prototype �lter, and the modulating transform. Based ona state-spa
e representation of this derived polyphase fa
torisation, signal 
ow graphs
an be obtained whi
h permit a very simple and eÆ
ient OSFB implementation. Theanalysis is performed for a number of di�erent 
lasses of OSFBs, and a 
omparison toexisting methods is drawn.1 Introdu
tionOversampled �lter banks (OSFBs) �nd a wide range of appli
ations, where 
om-putational redu
tions for resour
e-demanding signal pro
essing algorithms aresought by means of subband approa
hes. Examples in
lude subband adaptive�lters used in a
ousti
 e
ho 
ontrol [1; 2℄, line enhan
ement [3℄, or beamform-ing [4℄. Another use of OSFBs are, for example, transmultiplexers for the trans-mission of several users over a single 
hannel [5℄. Parti
ularly in the light of
omputational eÆ
ien
y, simple low 
omplexity realisations for the �lter banksthemselves are therefore desirable. Despite this motivation and in 
ontrast totheir 
riti
ally de
imated 
ounterparts [6; 7℄, numeri
ally eÆ
ient implementa-tions of non-
riti
ally sampled (or \oversampled") �lter banks have re
eived littleattention.A simple �lter bank system giving K subband signals de
imated by N � Kis shown in Fig. 1. An eÆ
ient implementation is based on modulation of all Kanalysis �lters Hk(z) and all synthesis �lter Gk(z) from one prototype �lter [8℄.For OSFBs with non-
riti
al de
imation N < K, an eÆ
ient implementationhas been reported by Wa
kersreuther [9℄, where a time domain approa
h leads
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Fig. 1. Analysis and synthesis �lter bank for subband de
omposition of X(z).to a fa
torisation of the analysis �lter bank operation into a �ltering operationlinked to the prototype �lter 
oeÆ
ients, a 
y
li
al shift, and the appli
ationsof the appropriate modulating transform (e.g. a DFT). A similar approa
h re-sulting in a di�erent sequen
e of exe
ution is presented in [10; 5℄, with a time-varying ex
itation of di�erent 
omponents of the prototype �lter followed by themodulating transform. More re
ently, polyphase fa
torisations in the z-domainhave been presented [11; 12℄, whi
h also permit a separation into �ltering op-erations based on the prototype �lter, and the modulating transform. For all
ases [9; 10; 11; 12; 5℄, a dual implementation 
an be found for the synthesis�lter bank operation.The polyphase approa
h [11; 12℄ 
an be utilised as a starting point to derive a�lter bank fa
torisation yielding a very simple and low 
ost implementation [13℄.Here, this fa
torisation is generalised to arbitrary length prototype �lters andarbitrary modulations, for whi
h the analysis and fa
torisation is presented inSe
tion 2. Based on a state-spa
e representation of the OSFB operations inSe
tion 3, signal 
ow graphs for analysis and synthesis �lter bank are derivedin Se
tion 4. Further, in the latter the implementation and 
omputational 
om-plexity of the resulting 
ir
uits is dis
ussed and 
ompared to existing methods.In our notation, boldfa
e upper
ase variables are matrix valued, boldfa
elower
ase or upper
ase underlined quantities refer to ve
tor valued variables.An N�N identity matrix is denoted by IN , an N�M matrix with zero elementsby 0N�M .2 Filter Bank Analysis2.1 Polyphase NotationLet us 
onsider the analysis �lter bank of Fig. 1 produ
ing K subband signals.To exploit 
omputational redundan
ies arising from the de
imation by N , apolyphase des
ription is utilized [7℄. A polyphase notation for the kth analysis�lters, Hk(z) = N�1Xn=0 z�nHkjn(zN ) ; (2.1)
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Fig. 2. Analysis �lter bank with demultiplexer and H(z) des
ribing an N �KMIMO system.produ
es a de
omposition into N type-I polyphase 
omponents Hkjn(z) [7℄. Sim-ilarly, the input signalX(z) is de
omposed into N type-II polyphase 
omponentsXn(z), X(z) = N�1Xn=0 z�N+n�1Xn(zN ) : (2.2)If the polyphase 
omponents are organised in ve
tor form,Hk(z) = �Hkj0(z) Hkj1(z) � � � HkjN�1(z)�T (2.3)X(z) = [X0(z) X1(z) � � � XN�1(z)℄T (2.4)a subband signal Yk(z) 
an be denoted asYk(z) = HTk (z) �X(z) : (2.5)For 
ompatibility, in the following we assume that �lters are always subje
tedto type-I and signals to type-II polyphase de
ompositions.2.2 Analysis Filter BankFor a 
ompa
t notation of the analysis �lter bank operations, the K subbandsignals are 
olle
ted in a ve
tor Y (z) = [Y0(z) Y1(z) � � � YK�1(z)℄T. Inserting(2.5) gives Y (z) = �H0(z) H1(z) � � � HK�1(z)�T �X(z) (2.6)= H(z) �X(z) ; (2.7)where H(z) 2 CK�N (z) is the polyphase analysis matrix [11℄. With the des
rip-tion (2.7), the analysis �lter bank in Fig. 1 
an be implemented by a demul-tiplexer followed by a linear time-invariant multi-input multi-output (MIMO)system H(z) as shown in Fig. 2. We are now interested in a parti
ular fa
tori-sation of H(z).It is assumed that the analysis �lters are FIR with Lp 
oeÆ
ients, and derivedfrom a prototype �lter P (z) by modulation. With the 
oeÆ
ients of the kthanalysis �lter organised in a ve
tor hk 2 C Lp ,hk = �hk[0℄ hk[1℄ � � � hk[Lp�1℄�T ; (2.8)
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Fig. 3. (a) Even sta
ked and (b) odd sta
ked K-
hannel �lter bank.the polyphase 
omponents in (2.3) 
an be written asHk(z) = �IN z�1IN � � � z�bLp=N
+1IN z�bLp=N
IR0N�R�R �| {z }LT1 (z) �hk (2.9)where IN is an N �N identity matrix, b�
 the 
oor operator, and R = modNLpthe remainder of the division of the �lter length Lp by the de
imation fa
torN . The dependen
y of Hk(z) on the underlying prototype �lter with 
oeÆ
ientsp[i℄, i = 0 : : : Lp�1 is in
orporated ashk = 26664 p[0℄ 0p[1℄ . . .0 p[Lp�1℄ 37775| {z }P �26664 tk[0℄tk[1℄...tk[Lp�1℄ 37775| {z }tk ; (2.10)based on the generally 
omplex modulation sequen
e 
ontained in tk 2 C Lp . Thematrix P 2 RLp�Lp is a diagonal matrix holding the prototype �lter 
oeÆ
ients.Depending on whi
h modulation is invoked for the �lter bank, di�erent pe-riodi
ities of the sequen
e tk[i℄, i = 0 : : : Lp�1, result. If the �lter bank is evensta
ked as shown in Fig. 3(a), the periodi
ity is K. In this 
ase, a 
ompa
tnotation of the modulation sequen
e 
an be foundtk = �IK IK � � � IK IS0K�S�S �| {z }LT2 T � ~tk ; (2.11)where ~tk 2 CK , L2 2 NLp�K , and S = modKLp. Odd-sta
ked �lter banksas in Fig. 3(b) exhibit a 2K periodi
ity of tk[i℄. Additional symmetries in the
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e 
an however be exploited by alternating sign 
hanges onblo
ks of K 
oeÆ
ients,tk = [IK �IK IK �IK � � � ℄T � ~tk : (2.12)Instead of modifying the matrix L2 of odd sta
ked �lter banks, this sign 
hange
an be in
orporated into P in (2.10) and hen
e the prototype �lter P (z) | atri
k that is also known from dis
rete 
osine transform implementations [7℄. It isassumed that for odd sta
ked �lter banks su
h a modi�
ation of the prototype�lter is performed by negating the 
oeÆ
ients' signs in every se
ond K-blo
k of
oeÆ
ients. With this assumptions, in the following even and odd sta
ked �lterbanks 
an be treated alike using (2.11).The modulation sequen
es ~tk, k = 0 : : :K�1, are 
olle
ted in a matrixT = [~t0 � � � ~tK�1℄T 2 CK�K (2.13)whi
h for example for a DFT modulated �lter bank would be a K-point DFTmatrix. Applying (2.13) to the substitution of (2.11) and (2.10) into (2.6) givesH(z) = T � L2 �P � L1(z) (2.14)as notation for the polyphase analysis matrix. With (2.14) a fa
torisation intoprototype �lter 
omponents and a rotation by a transform matrix T has beenestablished similar to [11; 12℄. The di�eren
e is that the diagonal matrix P
ontains no sparse �lters but only the prototype �lter 
oeÆ
ients, whi
h will beexploited for the implementation in Se
tion 4.2.3 Synthesis Filter BankDual to the analysis �lter bank, the synthesis �lter bank as shown in Fig. 1upsamples the subband signals by a fa
tor N and applies interpolation �ltersGk(z). The 
ondition that all �lters Gk(z) and Hk(z) are derived from the sameprototype lowpass �lter and that the �lter bank is perfe
tly re
onstru
ting isguaranteed by H(z) being paraunitary [11℄. Re
onstru
tion is then given bythe polyphase synthesis matrix G(z) 2 CN�K (z), whi
h is the parahermitian ofH(z), and relates the subband samples ba
k to the polyphase 
omponents of thefullband signal, X̂(z) = G(z) � Y (z) : (2.15)For 
ausality, a delay has to be introdu
ed su
h that X̂(z) = z�Lp+1 �X(z) inFig. 1. In the N -polyphase domain, this is expressed as [7℄X̂(z) = � 0N�R�R z�bLp=N
+1 � IN�Rz�bLp=N
 � IR 0R�N�R �| {z }�(z) �X(z) : (2.16)
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Fig. 4. Synthesis �lter bank with G(z) des
ribing a K�N MIMO system fol-lowed by a multiplexer.In
orporating this delay into the perfe
t re
onstru
tion 
ondition, G(z) �H(z) =�(z), the polyphase synthesis matrix is given byG(z) = �(z) �HH(z�1) (2.17)= �(z) � LT1 (z�1) �P � LT2 �TH : (2.18)Evaluating �(z) � LT1 (z�1) in (2.18) givesL̂T1 (z) = �(z) � LT1 (z�1) = LT1 (z) � JLp ; (2.19)where JLp is an Lp�Lp reverse identity matrix left-right 
ipping the 
ausalmatrix LT1 (z). The polyphase synthesis matrix in (2.18) leads to the signal
ow graph in Fig. 4 with the MIMO system G(z) followed by a multiplexer.Its fun
tionality is identi
al to the original synthesis �lter bank in Fig. 1, butmultipli
ations with expanding zeros in the interpolations �lters are avoided.Paraunitarity of H(z) is equivalent to the �lter bank implementing a tightframe de
omposition, whi
h o�ers useful properties su
h as a �xed energy rela-tion between the fullband signal X(z) and the subband samples in Y (z). In amore general 
ase, Hk(z) and Gk(z) 
an be based on di�erent prototype low-pass �lters (with di�erent 
oeÆ
ients or even �lter lengths) and therefore the�lter bank system is not ne
essarily perfe
tly re
onstru
ting. In this 
ase thefa
torisation of the polyphase analysis matrix remains as in Se
tion 2.2, whilethe fa
torial matri
es of G(z) in (2.18) are built a

ordingly, whereby the pa-rameters of the synthesis prototype �lter have to be applied for L1(z), P, andL2.3 Canoni
al State-Spa
e RepresentationsBefore trying to �nd suitable implementations for the previously fa
torised �l-ter bank operations, 
anoni
al state-spa
e representations for Figs. 2 and 4 arederived in this se
tion. These representations take the form� zW (z)V (z) � = � A BC D � � � W (z)U(z) � ; (3.1)A 
ow graph of (3.1) is given in Fig. 5. Appropriate system matri
es A, B, C,D, a state vektor W (z), input U(z) and output V (z) need to be de�ned in thefollowing.
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e representation with states W (z).3.1 Analysis Filter Bank RepresentationFor the analysis �lter bank, U(z) 
ontains N demultiplexed samples of the inputsignal (i.e. U(z) = X(z), the output V (z) = Y (z) holds the K subband signals.For a 
anoni
al form, the state ve
torW (z) must not have more than Lp�N ele-ments and 
an be found by reformulating the analysis operation by introdu
tionof an intermediate variable Q(z):Y (z) = T � L2 �P �Q(z) with Q(z) = L1(z) �X(z) (3.2)Q(z) = � 0N�Lp�N 0N�NILp�N 0Lp�N�N � z�1 �Q(z) + � IN0Lp�N�N �X(z) : (3.3)With the re
ursive update in (3.3), the lower portion with Lp�N elements ofQ(z) now forms the state ve
tor W (z), and the state spa
e system matri
es 
anbe identi�ed asA = � 0N�Lp�2N 0N�NILp�2N 0Lp�2N�N � B = � IN0Lp�2N�N � (3.4)C = T � L2 �P � � 0N�Lp�NILp�N � D = T � L2 �P � � IN0Lp�N�N � : (3.5)Note that all memory exhibiting matri
es in (2.14) have been repla
ed by mem-oryless operations due to the re
ursive updating in (3.1).3.2 Synthesis Filter Bank RepresentationFor the synthesis, the input in Fig. 5 now 
ontains the K subband samples,U(z) = Y (z), whi
h are used for the re
onstru
tion of N polyphase 
omponentsof the fullband signal X̂(z), held in the output V (z) = X̂(z). A suitable stateve
tor W (z) is sought from (2.18) with (2.19) inserted:X̂(z) = L̂T1 (z) �P � LT2 �TH � Y (z) = �0N�Lp�N IN � �Q(z) (3.6)Q(z) = �0N�Lp�N 0N�NILp�N 0Lp�N�N � z�1 �Q(z) + P�LT2 �TH �Y (z) (3.7)The upper Lp�N elements of the intermediate variable Q(z) form the stateve
tor W (z), whi
h together with the re
ursive formulation (3.7) gives rise to
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e matri
es:A = �0N�Lp�2N 0N�NILp�2N 0Lp�2N�N � B = � ILp�N 0Lp�N�N ��P�LT2 �TH (3.8)C = � 0N�Lp�2N IN � D = � 0N�Lp�N IN ��P�LT2 �TH (3.9)The system matri
es A in both (3.4) and (3.8) represent tapped delay lines(TDL), in whi
h the state values are shifted by N states for every update itera-tion.4 Filter Bank ImplementationBased on the fa
torisations in Se
tion 2 and the state-spa
e representations inSe
tion 3, we now aim to �nd signal 
ow graphs that provide simple and eÆ
ientOSFB implementations.4.1 Analysis Filter Bank ImplementationInspe
ting (3.4) and (3.5), the analysis �lter bank operation in (2.14) 
an beexe
uted in two steps. As mentioned above, the state values from a TDL, whi
his shifted by A and updated with N fresh samples in every subband samplingperiod by B. Hen
e, C and D are ex
ited by Lp�N old and N 
urrent inputsamples inW (z) and U(z), respe
tively. Due the similiarity of C and D, a singleTDL [UT(z) WT(z)℄T holding a total of Lp 
urrent and past input samples 
anbe assembled. The result is the 
ow graph in Fig. 6. There, the demultiplexingof the s
alar OSFB input into N parallel samples in U(z) as shown in Fig. 2 isalready in
orporated into the TDL.A

ording to (3.5), in Fig. 6 the TDL ve
tor [UT(z) WT(z)℄T is passed intothe blo
k P, multiplying ea
h value by a prototype �lter 
oeÆ
ients p[i℄. Fromthe results, L2 
reates K subsummations. After rotated of these subsums by themodulation matrix T, �nally a set of K subband samples has been 
al
ulated.Note, that the only memory-exhibiting operation in this analysis �lter bankrealisation is the TDL holding Lp samples of the input signal. The numberof states has in
reased by N over the 
anoni
al state-spa
e representation in(3.4) and (3.5) due to the in
lusion of the demultipled of Fig. 2. Therefore withrespe
t to the overall 
ir
uit running at the fullband rate, the 
ir
uit in Fig. 6 is
anoni
al.4.2 Synthesis Filter Bank ImplementationLet us 
onsider the system matri
es B and D de�ned for the synthesis OSFBin (3.8) and (3.9), respe
tively, and the state-spa
e representation in Fig. 5. Itis obvious that the subband samples in U(z) = Y (z) are derotated by TH anddupli
ated to Lp values by LT2 to �nally ex
ite the Lp prototype �lter 
oeÆ
ientsin P. Of these Lp produ
ts, the upper Lp�N values are lat
hed by B onto theTDL implemented by A in (3.8). The lower N produ
t values are added withthe lower N elements of the state ve
tor to form the output V (z) = X̂(z).In
orporating the multiplexing of the output X̂(z) to X̂(z), the TDL stru
ture
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an be realised as shown in Fig. 7. This 
an also be motivated by merging themultiplexer of Fig. 4 with L̂T1 (z).Note that similar to the analysis OSFB in Fig. 6 this 
ir
uit only requires asingle TDL, onto whi
h the results of the operation P �LT2 �TH � Ŷ (z) are a

u-mulated. This operation is performed on
e in every subband sampling period.Afterwards, the values in the TDL 
an be shiftedN times, 
lo
ked at the fullbandrate, to form the fullband output samples. Similar arguments as in Se
tion 4.1hold for the 
anoni
al property of the 
ow graph in Fig. 7.4.3 Spe
ial Filter Bank CasesA number of spe
ial �lter bank implementations arise from di�erent 
hoi
es of thetransform matrix T, whi
h in the following is to be re�ned in its implementation.In 
ase of a DFT modulated �lter bank, resulting in an even sta
ked design asshown in Fig. 3(a), T is a K � K DFT matrix, T = TDFT. In 
ase of ageneralised DFT (GDFT, [14℄) �lter bank, T is a GDFT matrix. This GDFTmatrix 
omprises of elements tk;n = ej 2�K (k+k0)(n+n0), with n = 0 : : : Lp�1 andk = 0 : : : Lp�1. Note that for k0 = 12 , the odd sta
ked �lter bank 
hara
teristi
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Fig. 7. Synthesis �lter bank signal 
ow graph.of Fig. 3(b) arises. A GDFT matrix generally permits a fa
torisationT = D1 �TDFT �D2 : (4.1)For an odd sta
ked �lter bank, all matri
es are K � K and D1 and D2 havediagonal form if inversion of the signs of prototype 
oeÆ
ients are performed asdis
ussed in Se
tion 2.2 [12℄.EÆ
ient implementations make use of an FFT routine instead of performingTDFT as a matrix operation. Further, if the input signal X(z) is real valued, (i)all operations ex
ept the transform matrix 
an be performed with real arithmeti
and (ii) redundan
ies arise due to approximately half of the subband signalsbeing 
omplex 
onjugate 
opies of others. Hen
e about half (depending on theDFT/GDFT transform and K being odd or even) of the subbands do not needto be 
al
ulated nor pro
essed.Single sideband (SSB) modulated OSFBs for real valued subband signals 
anbe obtained by modi�
ation of a GDFT modulated �lter bank de
imated by onlyN=2 [8℄. An additional 
omplex modulation is performed on the subband signalsY (z) followed by a real operation. On the synthesis side, this is 
ompensated bya mat
hing demodulation prior to feeding into a GDFT synthesis �lter bank.



Analysis and Fast Implementation of Oversampled Modulated Filter Banks 273Table 1 Computational Complexity of Filter Banks ImplementationsCreal / [MACs℄ C
omplex / [MACs℄DFT 1N (Lp + 4K log2K) 1N (2Lp + 4K log2K)GDFT 1N (Lp + 4K log2K + 4K) 1N (2Lp + 4K log2K + 8K)SSB 2N (Lp + 4K log2K + 5K) 2N (2Lp + 4K log2K + 10K)4.4 Computational ComplexityFrom the signal 
ow graphs for analysis and synthesis in Figs. 6 and 7, the
omputational 
omplexities for both operations 
an be evaluated in terms ofmultiply-a

umulates (MACs) per sampling period. The latter is the period ofthe fullband signals prior analysis or after synthesis. The 
omplexities are givenin Tab. 1 and are identi
al for analysis and synthesis, but di�er for the 
hoi
e ofT and depend on whether the input signal is real or 
omplex valued. Note, thatthe multipli
ation of the 
omplex samples with the real valued prototype �lter
oeÆ
ients a

rues to 2Lp MACs. The modulation matrix TDFT is assumedto be implemented by a K-point FFT requiring 4K log2K real valued MACs,whi
h is invariably applied for all types of �lter banks.Although a number of methods reported in the literature give identi
al 
om-plexities in terms of MACs, the realisations in Figs. 6 and 7 do not require anyadditional time-varying 
ir
ular shifts [9℄ or swit
hing [5℄, the indexing of time-varying �lters [10℄, or �lters with sparse 
oeÆ
ients [11; 12℄. Further, the signal
ow graphs in Figs. 6 and 7 only require a single 
ir
ular bu�er and hen
e aminimum amount of pointers for addressing, and permit an arbitrary prototype�lter length Lp independent of both the de
imation ratio N and the 
hannelnumber K.5 Con
lusionOversampled �lter banks where all �lters are derived from a prototype �lter bymodulation have been analysed using the well-known polyphase de
omposition.Similar to previous analyses in the literature, this de
omposition was fa
torisedto redu
e all �lter operations to operations on the prototype �lter 
oeÆ
ients,and a multipli
ation by the modulation matrix. This ensured a minimum amountof multiply-a

umulate operations. However, the fa
torisation was exploited viaa state-spa
e representation to lo
ate all memory-requiring operations next to themultiplexers and demultiplexers of the 
ir
uit. The bene�t is an implementationwith a only single TDL that 
an be 
onveniently updated.The presented implementation 
an be applied to a variety of modulated �lterbanks, su
h as shown for DFT, GDFT, or SSB �lter banks, and with a large
exibility for the length of the prototype �lter. Although not expli
itly derivedhere, the analysis and synthesis �lter bank implementations 
an be similarlyapplied to �lter banks where �lters Hk(z) and Gk(z) originate from more thanone prototype �lter [15℄.
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