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Abstract. Oversampled modulated filter banks (OSFBs) are popularly employed for
a number of applications such as acoustic echo cancellation in order to reduce the pro-
cessing complexity of a signal processing algorithm. Hence, an efficient implementation
of OSFBs themselves is mandatory. In this paper, a polyphase description is used to
remove redundancies in the filter operations and to factorise the OSFB into filter com-
ponents depending on the prototype filter, and the modulating transform. Based on
a state-space representation of this derived polyphase factorisation, signal flow graphs
can be obtained which permit a very simple and efficient OSFB implementation. The
analysis is performed for a number of different classes of OSFBs, and a comparison to
existing methods is drawn.

1 Introduction

Oversampled filter banks (OSFBs) find a wide range of applications, where com-
putational reductions for resource-demanding signal processing algorithms are
sought by means of subband approaches. Examples include subband adaptive
filters used in acoustic echo control [1; 2], line enhancement [3], or beamform-
ing [4]. Another use of OSFBs are, for example, transmultiplexers for the trans-
mission of several users over a single channel [5]. Particularly in the light of
computational efficiency, simple low complexity realisations for the filter banks
themselves are therefore desirable. Despite this motivation and in contrast to
their critically decimated counterparts [6; 7], numerically efficient implementa-
tions of non-critically sampled (or “oversampled”) filter banks have received little
attention.

A simple filter bank system giving K subband signals decimated by N < K
is shown in Fig. 1. An efficient implementation is based on modulation of all K
analysis filters Hy(z) and all synthesis filter G(z) from one prototype filter [8].
For OSFBs with non-critical decimation N < K, an efficient implementation
has been reported by Wackersreuther [9], where a time domain approach leads
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F1a. 1. Analysis and synthesis filter bank for subband decomposition of X (z).

to a factorisation of the analysis filter bank operation into a filtering operation
linked to the prototype filter coefficients, a cyclical shift, and the applications
of the appropriate modulating transform (e.g. a DFT). A similar approach re-
sulting in a different sequence of execution is presented in [10; 5], with a time-
varying excitation of different components of the prototype filter followed by the
modulating transform. More recently, polyphase factorisations in the z-domain
have been presented [11; 12], which also permit a separation into filtering op-
erations based on the prototype filter, and the modulating transform. For all
cases [9; 10; 11; 12; 5], a dual implementation can be found for the synthesis
filter bank operation.

The polyphase approach [11; 12] can be utilised as a starting point to derive a
filter bank factorisation yielding a very simple and low cost implementation [13].
Here, this factorisation is generalised to arbitrary length prototype filters and
arbitrary modulations, for which the analysis and factorisation is presented in
Section 2. Based on a state-space representation of the OSFB operations in
Section 3, signal flow graphs for analysis and synthesis filter bank are derived
in Section 4. Further, in the latter the implementation and computational com-
plexity of the resulting circuits is discussed and compared to existing methods.

In our notation, boldface uppercase variables are matrix valued, boldface
lowercase or uppercase underlined quantities refer to vector valued variables.
An N xN identity matrix is denoted by Iy, an N x M matrix with zero elements

by 0nxar-

2 Filter Bank Analysis
2.1 Polyphase Notation

Let us consider the analysis filter bank of Fig. 1 producing K subband signals.
To exploit computational redundancies arising from the decimation by N, a
polyphase description is utilized [7]. A polyphase notation for the kth analysis
filters,
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F1a. 2. Analysis filter bank with demultiplexer and H(z) describing an N x K
MIMO system.

produces a decomposition into N type-I polyphase components Hy,,,(z) [7]. Sim-
ilarly, the input signal X (z) is decomposed into N type-II polyphase components
Xn(2),

N—-1
X(z) =Y 27Nlx, (2N) (2.2)

n=0
If the polyphase components are organised in vector form,
T
Hy(z) = [Hgo(z) Hyp(z) -+ Hyna(2)] (2.3)
X(z) = [Xo(2) Xi(2) -+ Xna(2)]" (2.4)
a subband signal Y% (2) can be denoted as
Yi(z) = Hy(2) - X(2) (2.5)

For compatibility, in the following we assume that filters are always subjected
to type-I and signals to type-II polyphase decompositions.

2.2 Analysis Filter Bank
For a compact notation of the analysis filter bank operations, the K subband

signals are collected in a vector Y (z) = [Yo(z) Yi(2) -++ Yk (2)]t. Inserting
(2.5) gives

Y(z) = [Ho(z) Hy(2) - Hiq(d)] - X(2) (2.6)

= H(z) - X(2) , (2.7)

where H(z) € CEK*N (2) is the polyphase analysis matrix [11]. With the descrip-
tion (2.7), the analysis filter bank in Fig. 1 can be implemented by a demul-
tiplexer followed by a linear time-invariant multi-input multi-output (MIMO)
system H(z) as shown in Fig. 2. We are now interested in a particular factori-
sation of H(z).

It is assumed that the analysis filters are FIR with L, coefficients, and derived
from a prototype filter P(z) by modulation. With the coefficients of the kth
analysis filter organised in a vector hy € Cl»,

by, = [ [0] hell] - hyLp—1]])" (2.8)
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F1G. 3. (a) Even stacked and (b) odd stacked K-channel filter bank.

the polyphase components in (2.3) can be written as

—[Lp/N|
ﬂk(Z): In ZﬁlIN Z*LLP/NJ+1IN ZO Ix
N-RxR

~ /
'

LT(2)

he  (2.9)

where Iy is an N x N identity matrix, | -] the floor operator, and R = modyL,
the remainder of the division of the filter length L, by the decimation factor
N. The dependency of Hy(z) on the underlying prototype filter with coefficients
pli], i =0...L,—1 is incorporated as

0 0 £4[0]
(1] tr[1]
hy, = . : : , (2.10)
0 plLy—1] | | tlLy—1]
P tr

based on the generally complex modulation sequence contained in t;, € CF». The
matrix P € Rl» *Lr is a diagonal matrix holding the prototype filter coefficients.

Depending on which modulation is invoked for the filter bank, different pe-
riodicities of the sequence #;[i], i = 0...L,—1, result. If the filter bank is even
stacked as shown in Fig. 3(a), the periodicity is K. In this case, a compact
notation of the modulation sequence can be found

T
t, = |Ix Ig Ix OK{S;Xs e, (2.11)

~ /
'

Ly

where t, € CK, Ly € NFo XK and S = modg L,. Odd-stacked filter banks
as in Fig. 3(b) exhibit a 2K periodicity of t;[i]. Additional symmetries in the
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modulation sequence can however be exploited by alternating sign changes on
blocks of K coefficients,

tp =[x —Ix Ix —Ig ---]" -6 . (2.12)

Instead of modifying the matrix Ly of odd stacked filter banks, this sign change
can be incorporated into P in (2.10) and hence the prototype filter P(z) — a
trick that is also known from discrete cosine transform implementations [7]. It is
assumed that for odd stacked filter banks such a modification of the prototype
filter is performed by negating the coefficients’ signs in every second K-block of
coefficients. With this assumptions, in the following even and odd stacked filter
banks can be treated alike using (2.11).
The modulation sequences tz, £ =0... K —1, are collected in a matrix

T=1[ty -~ tgq]" €CK*K (2.13)

which for example for a DFT modulated filter bank would be a K-point DFT
matrix. Applying (2.13) to the substitution of (2.11) and (2.10) into (2.6) gives

H(z) =T Ly -P-Ly(2) (2.14)

as notation for the polyphase analysis matrix. With (2.14) a factorisation into
prototype filter components and a rotation by a transform matrix T has been
established similar to [11; 12]. The difference is that the diagonal matrix P
contains no sparse filters but only the prototype filter coefficients, which will be
exploited for the implementation in Section 4.

2.3 Synthesis Filter Bank

Dual to the analysis filter bank, the synthesis filter bank as shown in Fig. 1
upsamples the subband signals by a factor N and applies interpolation filters
Gr(z). The condition that all filters G (z) and Hy(z) are derived from the same
prototype lowpass filter and that the filter bank is perfectly reconstructing is
guaranteed by H(z) being paraunitary [11]. Reconstruction is then given by
the polyphase synthesis matrix G(z) € CV*X (z), which is the parahermitian of
H(z), and relates the subband samples back to the polyphase components of the
fullband signal,

X()=G()-Y() . (2.15)

For causality, a delay has to be introduced such that X(z) = z="»*+!. X(z) in
Fig. 1. In the N-polyphase domain, this is expressed as [7]

N _ ON-RxR »—Lp/N|+1 IN-R
X&) =] iz, /n) I 0r nr X(z) . (2.16)

A(z)
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F1a. 4. Synthesis filter bank with G(z) describing a K x N MIMO system fol-
lowed by a multiplexer.

Incorporating this delay into the perfect reconstruction condition, G(z)-H(z) =
A(z), the polyphase synthesis matrix is given by

G(z) = A(z)-HH(z ) (2.17)
= A(z)-L{(z"")-P-Ly-T" . (2.18)

Evaluating A(z) - LT (27!) in (2.18) gives
LT(z) = AG)-LT ) =L () - 31, (2.19)

where Jz is an L; x L, reverse identity matrix left-right flipping the causal
matrix LT (z). The polyphase synthesis matrix in (2.18) leads to the signal
flow graph in Fig. 4 with the MIMO system G(z) followed by a multiplexer.
Its functionality is identical to the original synthesis filter bank in Fig. 1, but
multiplications with expanding zeros in the interpolations filters are avoided.

Paraunitarity of H(z) is equivalent to the filter bank implementing a tight
frame decomposition, which offers useful properties such as a fixed energy rela-
tion between the fullband signal X (z) and the subband samples in Y (z). In a
more general case, Hi(z) and Gj(z) can be based on different prototype low-
pass filters (with different coefficients or even filter lengths) and therefore the
filter bank system is not necessarily perfectly reconstructing. In this case the
factorisation of the polyphase analysis matrix remains as in Section 2.2, while
the factorial matrices of G(z) in (2.18) are built accordingly, whereby the pa-
rameters of the synthesis prototype filter have to be applied for L;(z), P, and
L.

3 Canonical State-Space Representations

Before trying to find suitable implementations for the previously factorised fil-
ter bank operations, canonical state-space representations for Figs. 2 and 4 are
derived in this section. These representations take the form

W(z) | _| A B . W (2) (3.1)
Vi) | | C D U(z) ’ '
A flow graph of (3.1) is given in Fig. 5. Appropriate system matrices A, B, C,

D, a state vektor W (z), input U(z) and output V(z) need to be defined in the
following.
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F1a. 5. Flow graph of state-space representation with states W (z).

3.1 Analysis Filter Bank Representation

For the analysis filter bank, U(z) contains N demultiplexed samples of the input
signal (i.e. U(z) = X (z), the output V(z) = Y (2) holds the K subband signals.
For a canonical form, the state vector W (z) must not have more than L,—N ele-
ments and can be found by reformulating the analysis operation by introduction
of an intermediate variable Q(z):

Y(2) = T-Ly-P-Q(2) with  Q(z) = Li(2) - X(2) (3.2)

I sl ER Rt O PN PYSICY)

I, v  Op,nNxN 0L, NxN

With the recursive update in (3.3), the lower portion with L, — N elements of
Q(z) now forms the state vector 1 (z), and the state space system matrices can
be identified as

A:[ONXLP—” O } B:{ Iy ] (3.4)

Iron  Op,2nxN Or,2nNxN
C=T L,-P.| ONxteN D=T-L,-P- In . (3.5)
ILP—N OLP—N><N

Note that all memory exhibiting matrices in (2.14) have been replaced by mem-
oryless operations due to the recursive updating in (3.1).

3.2 Synthesis Filter Bank Representation

For the synthesis, the input in Fig. 5 now contains the K subband samples,
U(z) =Y (z), which are used for the reconstruction of N polyphase components
of the fullband signal X (z), held in the output V(z) = X(z). A suitable state
vector W (z) is sought from (2.18) with (2.19) inserted:

o

(2) = L{(z) P-LT TN .Y(2) = [Onxz, v IN] Q(2) (36)

0 — 0 —
Q@ = | o) 726 + PLITIYG) (3D

The upper L, — N elements of the intermediate variable Q(z) form the state
vector W (z), which together with the recursive formulation (3.7) gives rise to
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the following state-space matrices:

A ONxL 2N OnxnN B:[ILP—N OL,,—NxN]-P'L;F'TH (3.8)
Iron  OponxN

C=]Onxr,2nv In] D= Onxz,~ In|-P-Ly-TH  (3.9)

The system matrices A in both (3.4) and (3.8) represent tapped delay lines
(TDL), in which the state values are shifted by N states for every update itera-
tion.

4 Filter Bank Implementation

Based on the factorisations in Section 2 and the state-space representations in
Section 3, we now aim to find signal flow graphs that provide simple and efficient
OSFB implementations.

4.1 Analysis Filter Bank Implementation

Inspecting (3.4) and (3.5), the analysis filter bank operation in (2.14) can be
executed in two steps. As mentioned above, the state values from a TDL, which
is shifted by A and updated with N fresh samples in every subband sampling
period by B. Hence, C and D are excited by L, —N old and N current input
samples in W (z) and U(z), respectively. Due the similiarity of C and D, a single
TDL [U*(2) W'(2)]" holding a total of L, current and past input samples can
be assembled. The result is the flow graph in Fig. 6. There, the demultiplexing
of the scalar OSFB input into N parallel samples in U(z) as shown in Fig. 2 is
already incorporated into the TDL.

According to (3.5), in Fig. 6 the TDL vector [U"(z) W '(2)]T is passed into
the block P, multiplying each value by a prototype filter coefficients p[i]. From
the results, Ly creates K subsummations. After rotated of these subsums by the
modulation matrix T, finally a set of K subband samples has been calculated.

Note, that the only memory-exhibiting operation in this analysis filter bank
realisation is the TDL holding L, samples of the input signal. The number
of states has increased by NN over the canonical state-space representation in
(3.4) and (3.5) due to the inclusion of the demultipled of Fig. 2. Therefore with
respect to the overall circuit running at the fullband rate, the circuit in Fig. 6 is
canonical.

4.2 Synthesis Filter Bank Implementation

Let us consider the system matrices B and D defined for the synthesis OSFB
in (3.8) and (3.9), respectively, and the state-space representation in Fig. 5. Tt
is obvious that the subband samples in U(z) = Y (z) are derotated by TH and
duplicated to L, values by L to finally excite the L,, prototype filter coefficients
in P. Of these L, products, the upper L, —N values are latched by B onto the
TDL implemented by A in (3.8). The lower N product values are added with
the lower N elements of the state vector to form the output V(z) = X(z).
Incorporating the multiplexing of the output X (z) to X(z), the TDL structure
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F1a. 6. Analysis filter bank signal flow graph.

can be realised as shown in Fig. 7. This can also be motivated by merging the
multiplexer of Fig. 4 with LT (2).

Note that similar to the analysis OSFB in Fig. 6 this circuit only requires a
single TDL, onto which the results of the operation P-LT-TH.Y (z) are accu-
mulated. This operation is performed once in every subband sampling period.
Afterwards, the values in the TDL can be shifted IV times, clocked at the fullband
rate, to form the fullband output samples. Similar arguments as in Section 4.1
hold for the canonical property of the flow graph in Fig. 7.

4.3 Special Filter Bank Cases

A number of special filter bank implementations arise from different choices of the
transform matrix T, which in the following is to be refined in its implementation.
In case of a DFT modulated filter bank, resulting in an even stacked design as
shown in Fig. 3(a), T is a K x K DFT matrix, T = Tppp. In case of a
generalised DFT (GDFT, [14]) filter bank, T is a GDFT matrix. This GDFT
matrix comprises of elements t;,, = el & (kTko)(ntn0) with n = 0...L,—1 and
k=0...L,—1. Note that for kg = §, the odd stacked filter bank characteristic
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of Fig. 3(b) arises. A GDFT matrix generally permits a factorisation
T =D; - Tppr - Do . (4.1)

For an odd stacked filter bank, all matrices are K x K and D; and D, have
diagonal form if inversion of the signs of prototype coefficients are performed as
discussed in Section 2.2 [12].

Efficient implementations make use of an FFT routine instead of performing
TppT as a matrix operation. Further, if the input signal X (z) is real valued, (i)
all operations except the transform matrix can be performed with real arithmetic
and (ii) redundancies arise due to approximately half of the subband signals
being complex conjugate copies of others. Hence about half (depending on the
DFT/GDFT transform and K being odd or even) of the subbands do not need
to be calculated nor processed.

Single sideband (SSB) modulated OSFBs for real valued subband signals can
be obtained by modification of a GDFT modulated filter bank decimated by only
N/2 [8]. An additional complex modulation is performed on the subband signals
Y (z) followed by a real operation. On the synthesis side, this is compensated by
a matching demodulation prior to feeding into a GDFT synthesis filter bank.
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Table 1 Computational Complexity of Filter Banks Implementations

| || Creal / [MACs] | Ccomplex / [MACs] |
DFT i +(Lp + 4K log, K) i ~ (2L, + 4K log, K)
GDFT g(Lp + 4K log, K + 4K) QN(2Lp + 4K log, K + 8K)
SSB || 2(Ly + 4K log, K 1 5K) | (2L, + 4K log, K + 10K)

4.4 Computational Complexity

From the signal flow graphs for analysis and synthesis in Figs. 6 and 7, the
computational complexities for both operations can be evaluated in terms of
multiply-accumulates (MACs) per sampling period. The latter is the period of
the fullband signals prior analysis or after synthesis. The complexities are given
in Tab. 1 and are identical for analysis and synthesis, but differ for the choice of
T and depend on whether the input signal is real or complex valued. Note, that
the multiplication of the complex samples with the real valued prototype filter
coefficients accrues to 2L, MACs. The modulation matrix Tppr is assumed
to be implemented by a K-point FFT requiring 4K log, K real valued MACs,
which is invariably applied for all types of filter banks.

Although a number of methods reported in the literature give identical com-
plexities in terms of MACs, the realisations in Figs. 6 and 7 do not require any
additional time-varying circular shifts [9] or switching [5], the indexing of time-
varying filters [10], or filters with sparse coefficients [11; 12]. Further, the signal
flow graphs in Figs. 6 and 7 only require a single circular buffer and hence a
minimum amount of pointers for addressing, and permit an arbitrary prototype
filter length L, independent of both the decimation ratio N and the channel
number K.

5 Conclusion

Oversampled filter banks where all filters are derived from a prototype filter by
modulation have been analysed using the well-known polyphase decomposition.
Similar to previous analyses in the literature, this decomposition was factorised
to reduce all filter operations to operations on the prototype filter coefficients,
and a multiplication by the modulation matrix. This ensured a minimum amount
of multiply-accumulate operations. However, the factorisation was exploited via
a state-space representation to locate all memory-requiring operations next to the
multiplexers and demultiplexers of the circuit. The benefit is an implementation
with a only single TDL that can be conveniently updated.

The presented implementation can be applied to a variety of modulated filter
banks, such as shown for DFT, GDFT, or SSB filter banks, and with a large
flexibility for the length of the prototype filter. Although not explicitly derived
here, the analysis and synthesis filter bank implementations can be similarly
applied to filter banks where filters Hy(z) and Gj(z) originate from more than
one prototype filter [15].
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