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Design of Near Perfect Reconstruction Oversampled
Filter Banks for Subband Adaptive Filters

Moritz Harteneck, Stephan Weiss, and Robert W. Stewart

Abstract—In this brief, a design algorithm for real-valued and complex-
valued oversampled filter banks which yield a low level of inband alias
and enable simple subband adaptive structures is presented. The filter
banks are either based on complex modulation of a real-valued low-pass
prototype or on the direct or modulated setups of real-valued filter banks.
If real-valued filter banks are required, then the different channels will
have different subsampling ratios so that the bandpass sampling theorem
is not violated. This brief also presents design examples of real-valued
and complex-valued filter banks.

Index Terms—Adaptive filtering, filter bank design, oversampled near-
perfect reconstruction filter banks.

I. INTRODUCTION

Over the last two decades, adaptive filtering has been of consider-
able interest for many applications, such as acoustic echo cancelation
[1], noise reduction, equalization, and beamforming [2]. Often, the
adaptive system has to “model” a long-duration impulse response, as
in the case of, e.g., the identification of room acoustics [3], [4]. Hence,
with the high number of adaptive filter weights required, popular
adaptive algorithms based on least-mean-squares and least squares
techniques [5] become very computationally complex and exhibit a
slow convergence.

One possibility to combat these problems is the use of adaptive
algorithms, together with multirate techniques, to split the full-
band problem into smaller subband problems. If the well-researched
critically sampled perfect reconstruction filter banks are used to
decompose the input signals, the subband signals are contaminated
by aliasing, which requires adaptive filters in between adjacent bands
to compensate for this distortion [6]. Thus, multichannel adaptive
algorithms are being used in the subbands which exhibit a higher
computational complexity and a slower convergence for correlated
input signals. If the perfect reconstruction condition is dropped,
critically sampled structures are obtainable, which do not need cross-
adaptive filters, as spectral gaps ensure that aliasing in the subbands
does not occur [7], [8]. This spectral loss however prohibits exact
system identification and can significantly distort signals passing
through the filter bank. Applications in data communications or
high-quality audio can be very sensitive to such errors.

Another possibility to achieve the decomposition of the input
signals is to use oversampled filter banks (OSFB’s), i.e., filter
banks which generate redundancy in the subbands. One class of
OSFB’s is obtained via complex modulation from a real-valued
low-pass prototype filter. If the prototype filter possesses a high
stopband attenuation, then aliasing in the subbands is sufficiently
suppressed. The subband signals in this class of OSFB’s are all
subsampled by the same subsampling ratioS. This filter bank can be
modified to perform a single-sideband (SSB) modulation-like filter
bank, yielding real-valued subband signals [9]–[11]. The trick is to
modulate the bandpass signals into the baseband prior to decimation,

Manuscript received May 4, 1998; revised February 10, 1999. This paper
was recommended by Associate Editor P. S. R. Diniz.

The authors are with the Signal Processing Division, Department of
Electrical and Electronic Engineering, University of Strathclyde, Glasgow G1
1XW, Scotland, U.K.

Publisher Item Identifier S 1057-7130(99)06537-4.

Fig. 1. General filter bank structure consisting of analysis and synthesis
stages.

thus avoiding problems with bandpass sampling [12]. Since the
prototype design is identical to the design for complex modulated
filter banks, it is not discussed further in this paper. Another OSFB
class consists of real-valued nonuniform filter banks [13] which have
different subsampling ratiosSl in each channel to satisfy the bandpass
sampling theorem and avoid inband aliasing. In this case, the analysis
filters posses different bandwidths which might be advantageous in,
e.g., psychoacoustic coding [14].

In this paper, we present a fast-converging and efficient design
algorithm for OSFB’s with near-perfect reconstruction property which
suppresses aliasing in the subbands, and is thus well suited for
subband adaptive filtering. Therefore, Section II, will introduce two
classes of real- and complex-valued OSFB’s. Section III discusses
an iterative least-squares design algorithm, for which examples will
be shown in Section IV. Our notation uses a normalized sampling
frequencyfs = 2. Lower-case italic letters denote scalar values,
lower- and upper-case boldface letters represent vector and matrix
quantities, respectively, andk is the discrete time index.

II. TYPES OF FILTER BANKS

Fig. 1 shows the concatenation of an analysis and a synthesis bank.
On the analysis side, the input signalx(k) is split intoL frequency
bands by analysis filtershl(k) and decimated by a factor ofSl in
the lth branch, giving the subband signalvl(k). On the synthesis
side, each corresponding branch, consisting of an upsampler and
a synthesis filterfl(k); restores the original fullband sampling rate
and interpolates the subband signal. Summing over all branches then
forms the output signal̂x(k). Such a filter bank possesses perfect
or near perfect reconstruction property, if the output signalx̂(k) is
essentially a copy of the input signalx(k) delayed by� samples,
i.e., x̂(k) � x(k��). Writing the transfer function of the filter bank
shown in Fig. 1 in the frequency domain gives

X̂(z) =

L�1

l=0

S �1

m=0

1

Sl
Fl(z)Hl zW

m
S

T (z)

X zW
m
S (1)

whereX̂(z); Hl(z); Fl(z); andX(z) are thez-transforms of̂x(k);
hl(k); fl(k); andx(k); respectively, andWS is a modulation factor
e�|(2�=S). The transfer functionsTl;m(z) describe the transfer of the
different aliasing termsm of each channell. For the adaptive filters to
work in the subbands without the need for information from adjacent
subbands [6], the aliasing terms form > 0 have to be approximately
zero, i.e.,

Tl;m(z) � 0; 8l = 0; � � � ; L� 1; m = 1; � � � ; Sl: (2)
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Fig. 2. Analysis filter setup for a four-channel complex-valued OSFB.

Note that if (2) is satisfied, (1) simplifies to

X̂(z) =

L�1

l=0

1

Sl
Fl(z)Hl(z)X(z) (3)

i.e., perfect reconstruction and power complementarity become equiv-
alent claims. To minimize the alias levelTl;m(z) in the subband
signals, complex- and real-valued setups are possible. These setups
are outlined in Section II-A and II-B, respectively.

A. Complex–Valued Filter Banks

One way to implement an OSFB where inband aliasing is reduced
to the level of the stopband attenuation of the analysis filters is
to use a complex-valued set of analysis (see Fig. 2) and synthesis
filters, whereby the filters are derived from a real-valued linear phase
prototypep(k) by a generalized discrete Fourier transform (GDFT)
[10]

hl(k) = p(k) � exp[|
2�

L
(l+

1

2
)(k+ k0)]: (4)

A time offsetk0 = �(lp � 1)=2 in (4) ensures linear-phase analysis
and synthesis filters if the prototype filterp(k) is linear phase; its
length lp is assumed to be even throughout this paper. Furthermore,
this choice ofk0 causes real and imaginary parts of the analysis filters
to separately fulfill linear-phase conditions. With the usual selection
as complex-conjugate and time-reversed versions of the analysis filter,
the synthesis filter take on a particularly simple form

fl(k) = ~hl(k) = hl(k): (5)

The offset 1=2 on the band indexl affects the position of the
passbands of theHl(z) [10] and assures that the analysis filters
are lined up equally in the frequency intervalf 2 [0; 1]; as shown
in Fig. 2. For real-valued inputx(k); only the frequency bands
from zero to one have to be covered by the analysis bank, since
the remaining subbands are complex conjugate copies and therefore
redundant. The oversampling ratio (OSR) for this filter bank equates
to (2L)=S;whereS is the common subsampling ratio for all channels.
Note that to avoid aliasing in the subbands, the prototype filter
p(k) has to be a real-valued low-pass filter strictly limited to the
frequency range[�1=S; 1=S]. This type of OSFB approximates an
implementation of Weyl–Heisenberg frames which are studied in
detail in [15].

Collecting the coefficients of the prototypep(k) and the analysis
and synthesis filtershl(k) andfl(k) in vectorsp; hl and fl

p = [p(0) p(1) � � � p(lp � 1)]T (6a)

hl = fl = [hl(0) hl(1) � � � hl(lp � 1)]T (6b)

where superscriptT denotes transpose, and the modulation in (4) can
be expressed by a convenient matrix-vector notation

hl = fl =Ml � p: (7)

The matricesMl are diagonal matrices with modulation factors (c.f.
(4)) on their main diagonal. For further details on this type of filter
bank and efficient polyphase implementations, refer to [10], [16],
[11].

(a)

(b)

Fig. 3. Analysis filter setup for real-valued OSFB’s using (a) three channels
and (b) nine channels.

B. Real-Valued Filter Banks

Another way to obtain a filter bank satisfying (2) is to use a real-
valued nonuniform OSFB and choose a setup where the bandpass
sampling theorem is not violated [12], [13]. For a real-valued signal
in the lth channel to be undistorted due to decimation by a factor
Sl; an interpretation of the bandpass sampling theorem requires the
undecimated subband signal’s band to lie entirely between any two
consecutive frequency points amongf = i�1=Sl; i = 1; 2; � � � ; Sl�1.

Extending this to OSFB’s means that every analysis filterhl(k) has
to be placed in the frequency domain, such that the resulting signal
does not violate the bandpass sampling theorem when subsampled
by a factorSl and that the analysis filters have to be placed such
that all frequencies are covered by at least one filter in order to allow
reconstruction.

Fig. 3(a) shows the simplest setup of analysis filters of a nonuni-
form real-valued OSFB. In this filter bank, the low-pass and high-pass
channels, produced byH0(z) andH2(z); are subsequently decimated
by two and therefore are alias-free. The bandpass channelH1(z) is
subsampled by a factor of three and also remains undistorted. Hence,
the OSR for this filter bank equates to2

l=0
�(1=Sl) = 133%.

Another possibility to obtain real-valued OSFB’s is to start from a
cosine-modulated filter bank withL0 channels, where the bandwidth
of the analysis filters is reduced such that no aliasing occurs during
decimation, and to fill the resulting spectral gaps by additional
analysis filters which are derived from a second prototype to allow
reconstruction. Filling the gaps with additional channels leads to a
filter bank with a total ofL = 2L0+1 channels. All filters are derived
from the two prototypesp0(k) andp1(k); as shown in Table I.

Fig. 3(b) shows, as an example, a nine-channel filter bank which is
modulated according to Table I. Channels 1, 3, 5, and 7 are derived
from the prototypep0(k) and can be subsampled by 4. To avoid
aliasing, the prototype filterp0(k) has to have a bandwidth of less
than 1=8; i.e., be limited to the frequency rangef 2 [�1=8; 1=8].
Channels 0, 2, 4, 6, and 8, however, are derived from the prototype
p1(k) and are subsampled by 8, 6, 5, 6, and 8, respectively. These
decimation ratios are chosen such that the allowed bandwidth of the
prototypep1(k) is as large as possible and results in this example
in the passband of the prototype to be restricted to the region
[�0:0833; 0:0833]. The OSR of this filter bank is 178%.

Analogous to Section II-A, the modulation can be expressed in
matrix notation. More information on this type of filter bank can be
found in [13], [17]–[19].
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TABLE I
MODULATION RULES

If a filter bank with a higher number of channels is required, the
presented cosine modulation approach can be used, starting with a
higherL0; or different setups can be found which satisfy the bandpass
sampling theorem. Alternatively, a previously designed filter bank can
be iterated which, however, leads in general to suboptimal solutions.

III. D ESIGN ALGORITHM

A common choice in the design of filter banks is to choose the
synthesis filters to be time-reversed and complex-conjugate versions
of the analysis filters. This yields a reduction in the free design
parameters. According to the theory of frames [20], this also leads
to very close approximation of signal decompositions with a fixed
energy translation between time and subband domain, regardless of
the input signal.

To design OSFB’s, as presented in Section II, an iterative least-
squares algorithm [22], [23] is used. The performance criterion to
be minimized by the algorithm is a combination of the filter bank
reconstruction error�1 and the stopband energy�2 of the analysis
filters hl(k)

� = �1 +  � �2 (8)

where is a positive weighting factor which trades off between the
importance of the reconstruction error and the stopband attenuation.
In the following, we discuss separately formulations for both�1 and
�2; and finally, present the design algorithm in Section III-C.

A. Reconstruction Error

If inband aliasing is sufficiently suppressed, the impulse response
t(k) of the overall filter bank, as given in Fig. 1, is the time-domain
formulation of (3), and can be written as a convolution of the analysis
and the synthesis filters

t(k) =

L�1

l=0

1

Sl
(hl(k) � fl(k)) (9)

where “�” denotes convolution and the factor1=Sl takes account
of the power loss in the channels due to decimation. Using matrix
notation, the convolution in thelth branch can be calculated by [24]

tl =

tl(0)
tl(1)
tl(2)

...
tl(2lp � 2)

=

hl(0) 0 � � � 0
hl(1) hl(0) � � � 0
hl(2) hl(1) � � � 0

...
...

. . .
...

0 0 � � � hl(lp � 1)

fl(0)
fl(1)
fl(2)

...
fl(lp � 1)

= Hl � fl: (10)

Evaluating the summation of (9), the impulse response of the whole
filter bank can be expressed as

t =
1

S0
H0

1

S1
H1 � � �

1

SL�1
HL�1

f0

f1
...

fL�1

= H � f : (11)

To get a measure of the reconstruction error, the Euclidean distance
between the impulse responset and a prefect delay (represented by
the vectorv) is evaluated

�1 = kt� vk2 = kH � f � vk2: (12)

B. Stopband Energy

As described in [25], [22], a measure for the energy contained in
the stopband of a linear phase analysis filterhl(k) can be calculated
by using a dense grid of frequency pointsf!0; !1; � � � ; !Ng covering
the whole stopband and calculating

�2;l=

1 cos(!0 � 1) � � � cos(!0 � (lp � 1))
1 cos(!1 � 1) � � � cos(!1 � (lp � 1))
...

...
. . .

...
1 cos(!N � 1) � � � cos(!N � (lp � 1))

hl(0)
hl(1)

...
hl(lp � 1)

2

=kPl � hlk
2: (13)

Here, the matrixPl describes the required specifications on the
stopbands of thelth analysis filter.

C. Minimization Algorithm

Using the above definitions and rewriting (8) in a matrix vector
notation for a generalL-channel filter bank, and assuming analysis
and synthesis filters to be the same, such that a tight frame is achieved
in very close approximation, the performance criterion can be written
as

� =
H

P
h�

v

0

2

: (14)

In (14), P = diag(P0;P1; � � � ;PL�1) is a matrix describ-
ing the frequency specifications on all analysis filters andh =
[hT0 hT1 � � � hTL�1]

T is a collection of the analysis filters. As defined
in (11) the matrixH consists of the matricesHl and these matrices
are dependent on the analysis filtershl. Therefore the performance
criterion (14) is to the power of four dependent on the design
parameters.

To enforce linear phase filters in the design algorithm, the axial
symmetry of the filter impulse responses can be exploited. As an
example, the prototype filterp(k) is completely characterized by its
first half of the impulse response. In matrix notation, this relationship
can be expressed as

p = L � �p (15)

whereL is an lp � (lp=2) matrix defined byL = [Il =2 Jl =2]
T ; I

being an identity andJ an inverse identity matrix. Incorporating (15)
into the design effectively halves the degrees of freedom.

Thus, for the three-channel real-valued OSFB discussed in
Section II-B, the performance criterion can now be written as

� =

1

S0
H0L

1

S1
H1L

1

S2
H2L

P0L 0 0

0 P1L 0

0 0 P2L

�h0
�h1
�h2

�

v

0

0

0

2

(16)

where the matricesPl describes the stopband requirements to elimi-
nate the aliasing caused by the subsampling process.
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TABLE II
ITERATIVE LEAST-SQUARES DESIGN ALGORITHM

For the nine channel real-valued OSFB as presented in Section II-
B, which is derived from two prototypesp0 andp1; the performance
criterion simplifies to

� = l2S

1

Sl
HlMlL

l2S

1

Sl
HlMlL

P0L 0

0 P1L

�p0

�p1
�

v

0

0

2

(17)

where the matricesP0 andP1 describe the frequency requirements
on the prototypesp0 andp1, respectively, and the setSl denotes the
set of filters derived from the prototypepl.

The performance criterion for the complex-valued OSFB presented
in Section II-A, which is derived from only one real-valued prototype
p, further simplifies to

� =
1

S

L�1

l=0

HlMlL

PL

�p�
v

0

2

(18)

where S is the common subsampling ratio andP describes the
frequency requirements on the prototype.

To perform the minimization of (14), an iterative least squares
technique [22], [26], [23] is used where the matrixH, which is being
built from the analysis filters, is substituted by the matrix being built
from an old set of analysis filters. This linearization gives a quadratic
approximation of the performance surface. To ensure convergence, a
relaxation step is added to the algorithm. The design algorithm can
now be formulated iteratively as shown in Table II, where� is the
relaxation parameter which has to be chosen between zero and one
and � quantifies the stop condition. The minimization of Step 2 can
be conveniently performed by a QR decomposition [27].

IV. DESIGN EXAMPLES

In this section, design examples of OSFB’s targeted for subband
adaptive filtering are shown. The filter banks have been designed to
yield a reconstruction error and an inband alias of about�80 dB,
giving a resolution of approximately 13 bits. These specifications
are targeted at audio applications, but higher quality designs are
easily achievable with the presented algorithms [13]. The parameters
settings in the design algorithm are� = 0:5 and = 10.

Fig. 4 shows the transfer functions of the analysis and synthesis
filters of a four-channel OSFB. The filter bank is designed for alias-
free decimation byS = 6 [11], giving an OSR of 133%. To achieve
the specifications, the design algorithm needs 14 iterations to produce
the prototype filter with a required number oflp = 192 taps.

Fig. 4. Four-channel complex-valued OSFB.

(a)

(b)

Fig. 5. Real-valued OSFB’s using (a) three channels and (b) nine channels.

Fig. 5(a) shows the transfer functions of the analysis filters of the
filter bank used to implement a three channel setup as presented in
Section II-B. To avoid inband aliasing, the stopbands of the analysis
filters hl(k) extend over[0:495 � � � 1]; [0 � � � 0:346] [ [0:643 � � � 1];
and [0 � � � 0:505]; which are subsampled by 2, 3, and 2, respectively.
Note that the stopbands of the prototypes have been enlarged slightly
to create a guard band. To achieve the required specifications, the
filters need 74 taps and the filter bank generates an OSR of 133%.
The design algorithm converged after 12 iterations.

Fig. 5(b) shows the transfer functions of the real-valued filters
used in the analysis bank of the nine channel OSFB as presented
in Section II-B. The stopband of the prototypep0(k); generating the
channels 1, 3, 5, and 7, extends from 0.123 to 1, and the stopband
of the prototypep1(k); generating the other channels, extends from
0.083 to 1. Note again that the stopbands have been slightly enlarged.
To avoid aliasing, the channels are decimated from the left to the
right by 8–4–6–4–5–4–6–4–8, giving an OSR of 178%. To meet
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the specifications, the analysis filters required 172 taps. The design
algorithm needs 11 iterations to achieve the minimization.

V. CONCLUSION

In this paper, a design algorithm for OSFB’s has been presented,
which is designed for the implementation of subband adaptive filters.
Therefore, two classes of filter banks, a real-valued and a complex-
valued class, have been introduced, which satisfy the requirement of
a low inband aliasing level, such that single-channel adaptive filters
operating in each subband are possible. An algorithm for the design
of these filter banks has been presented which is based on an iterative
least squares technique to minimize the performance criterion. Finally
design examples for the real-valued case and the complex-valued case
have been given.

Using these filter banks, together with adaptive filters, significant
computational savings are achievable. For example, using least-
squares adaptive filters, the subband approach with real-valued filter
banks reduces the computational requirements to 28.5% and 8.5%,
compared with a fullband algorithm for the presented three channel
and the nine channel OSFB’s, respectively. Using the presented
complex-valued filter bank, the structure needs about 7.4% of the
computational complexity of a fullband implementation. These sav-
ings can be even more significant if the number of channels and
the associated decimation factors are increased. Note that the given
percentages refer to the cost of adaptive filtering only. However,
the cost of filter bank computations can be kept low by judicious
implementation using polyphase factorizations [15], [28].

Simulations using the filter banks, together with adaptive filters,
which are not presented in this paper, have shown that the perfor-
mance in terms of minimum mean-squared error is limited by the
amount of inband aliasing and reconstruction error, which come from
the used filter bank [29]. For colored-noise input signals, however,
in general these subband structures have shown an improvement in
terms of convergence speed.
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