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Abstract 

We discuss a method to measure the convergence limits 
of general subband adaptive systems due to non-ideal filter 
banks. Aliasing caused in such filter banks presents a dis- 
tortion to the subband adaptive system which forms a lower 
limit for the minimum mean squared error The accuracy of 
the achievable model is given by the transferfunction of the 
filter bank. To measure both aliasing andfilter bank distor- 
tions, we employ the measurement technique by Heinle and 
Schuyler (1996). The presented approach is applicable to 
a wide range of subband adaptive filter systems. Examples 
for the measured limits are presented. 

1. Introduction 

Subband adaptive filtering (SAF) is widely used for 
problems where an adaptive system is required to iden- 
tify very long impulse responses as, for example, found 
in acoustic echo cancellation [1, 5 ,  81. The applica- 
tion to adaptive system identification is shown in Fig. 1, 
where adaptive filters operate in decimated subband signals. 
This has advantages over fullband realizations such as re- 
duced computational complexity, parallelization of process- 
ing tasks, and increased convergence speed for LMS-type 
adaptive algorithms. 

Unfortunately, SAF has several disadvantages and lim- 
itations. The effect of low energy at frequecy band edges 
on the convergence rate has, for example, been analysed 
in [6]. The achievable final minimum mean squared error 
(MMSE) in adaptation is limited by truncation effects and 
non-causality in the optimal impulse responses of the SAFs  
[5, 121. In terms of filter banks as shown in Fig. 2, the alias- 
ing introduced in the decimation stage and the distortion of 
the overall filter bank system present a lower limit for both 
MMSE and model accuracy 19, 101. To design an optimally 
performing SAF system, an a-priori quantitative knowledge 
of the latter errors is therefore particularly important. 
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Figure 1. Subband adaptive filter 
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Figure 2. Analysis-synthesis system 

The lower error bounds on MMSE and modelling er- 
ror derived in [lo] are, however, based on the use of a 
specific generalized DFT modulated filter bank, such that 
both error quantities can be expressed in terms of the co- 
efficients of the prototype lowpass filter of the filter bank. 
Due to this restriction, the method can not be applied to 
other filter bank structures, e.g. non-uniform filter banks 
with different subsampling ratios [2], or to filter banks only 
available as “black boxes” with not explicitly known co- 
efficients. To generalize our approach, we therefore em- 
ploy the measurement method by Heinle and SchiiBler [4], 
which measures aliasing and linear and non-linear distor- 
tions of implemented multirate systems where only the dec- 
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imations/expansions rates have to be known a priori. 
Based on the analytical prediction reviewed in Sec. 2, 

Sec. 3 outlines the principles of the proposed measurement 
method in. In Sec. 4, we first derive the measurement of the 
subband and the fullband MMSEs, and compare the results 
with [lo]. Finally, Sec. 5 presents the measurement of the 
model accuracy, underlined by with practical applications. 

2. Analytical Prediction of SAF Limitations 

2.1. MMSE Limits 

The decimation in the analysis filter bank shown in Fig. 2 
can be interpreted as a linear, but time-varying operation, 
which can be pictured as a spectral superposition in the 
frequency domain. The hypothesis is, that the adaptive 
filter can only identify linear time-invariant (LTI) compo- 
nents, while alias components appear to the algorithm as 
noise, hence creating the MMSE under otherwise optimal 
adaptation conditions. Assuming the knowledge of a white 
noise excited source model Lk ( e j" )  that explains all spec- 
tral shaping in the undecimated kth desired subband &[m] 
by including a noise shaping filter for ~ [ n ] ,  the unknown 
system ,S(ej"),  and the transfer function of the kth analysis 
filter ffk(d"), the alias spectrum in dk[m] can be isolated 

N - l  

L;lias(ejn) = Lk(e j (%+%;.,) .  wk(ej(%+%.",) , 
v=o 

(1) 

where wk(ej") is a rectangular window that cancels the 
passband and transition bands of the k-th analysis filter. The 
window is symmetrical to the filter's center frequency flc,k 
and wide: 

From the alias spectrum in (1) we can calculate the alias- 
component PSD, which forms a lower bound for the the 
subband error signal PSD: 

(3) 

Finally, the fullband error PSD is obtained by applying the 
subband error signals to the synthesis filter bank: 

where Gk ( ej") is the transfer function of the k-th synthesis 
filter as shown in Fig. 2. Finally, the minimum variance 

of the fullband error signal is calculated from (4) using the 
Wiener-Khintchine transform, 

1 "  
MMSE = - St:as(ei")dfi. ( 5 )  2r 1" 

If no information on the spectral characteristics of the 
signal x[n] and the unknown system s[n] is available, al- 
ternatively a source model Lk ( e j " )  only consisting of the 
analysis filters may be used. The error introduced by this 
approximation is usually tolerable, as experiments in [ 101 
demonstrate. 

2.2. Model Accuracy 

The equivalent fullband model of the SAF system shown 
in Fig. 1 is given by the overall impulse response of the 
transfer path between ~ [ n ]  and e[n] with adapted subband 
filters. If aliasing is sufficiently suppressed in the subbands 
(as mandatory for low MMSE), the accuracy of the equiva- 
lent fullband model is given by deviation of the filter bank 
distortion function 

K-1 

T(e j" )  = Nk(e'")Gk(ej") ( 6 )  
k=O 

from unity [ 101. 

3. Measurement Method of HeinldSchuBler 

The measurement method by Heinle and SchiiBler [4] al- 
lows to isolate a number of different error sources in multi- 
rate systems. It is based on an implicit polyphase represen- 
tation of the system to be measured, whereby the multirate 
system is split into a linear periodically time-varying multi- 
plexer part, and a multiple input-output system consisting of 
LTI transfer functions. These LTI transfer functions can be 
determined, and can be separated from any potential non- 
linearities (e.g. due to quantization) or other noise sources 
within the system. 

Fig. 3 shows the application to one branch of an analysis 
filter bank, L k ( z ) .  The test signal 4.1 is a random phase 
signal which avoids zeroes in the magnitude spectrum. In 
our experiments we use uniformly distributed white noise 
generated with MATLAB. The output signal dk[m] has a 
lower sampling rate than the input signal U[.]. The mea- 
surement program uses both the input and output signal of 
the implemented system to calculate N separate LTI trans- 
fer functions Lk,v(dn) ,  v E [O..N- 13 at M frequency 
points Qp = ,U . g. A standard measurement method 
for LTI-Systems is used that yields unbiased and consis- 
tent spectral estimates and isolates other distortions [3]. For 
convenience we will denote the measured transfer functions 
with Lk,v(,u). Each transfer function Lk,v(,u) character- 
izes the corresponding alias component in the k-th subband. 
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Figure 4. Concatenating measured spectra to 
fullband spectrum 

Figure 3. Measurement example with the 
Heinle/SchiiBler method 

We can reconstruct the frequency response of the bandpass 
L k  ( p )  = L k  ( e j  * f i  before downsampling by simply con- 
catenating the measured components 

L k ( P )  = L,Ih - V M ) ,  p E [O..NM-11, (7) 
N-1 

V=O 

where 

Note that the bandpass transfer function L k ( , U )  is repre- 
sented by N . M frequency points, while the N times 
downsampled components Lk,V (p) have only kf frequency 
points. Fig. 4 illustrates this operation, which can be inter- 
preted as a reverse downsampling procedure. 

This demonstrates the advantage of the measurement 
method: even without any explicit information about the 
filter bank other than the decimation rate, we can obtain a 
frequency-domain description of each bandpass. Note that 
this is possible even although only a downsampled output 
signal is available. 

4. Measuring the PSD of Alias Components in 
the Error Signals 

This section describes how we can determine a lower 
limit for error signals from the aliasing introduced by a 
“black box’’ analysis filter bank by applying the method out- 
lined in Sec. 3. To perform this calculation, the center fre- 
quency QC and the downsampling factor N in each subband 

must be known. In section 4.1 limits for the subband error 
signals are derived, and in section 4.2 we calculate the PSD 
and the variance of the fullband MMSE signal, where the 
synthesis filter bank is assumed to be another implemented 
“black box”. 

4.1. Subband Error Signals 

Fig. 5 shows the measurement setup. The analysis filter 
bank must be an implemented system, either in software or 
hardware (e.g. a DSP realization). Ideally, the spectral char- 
acteristics of of both the input signal, z[n] and the unknown 
system s[n] should be known. They can be exploited to re- 
alize a source model, which is used to preprocess the input 
d[n] of the filter bank. 

Figure 5. Measurement of subband error sig- 
nal spectrum 

The measurement program applies a random test signal 
U[.] to the device under test and records the decimated sys- 
tem response d k [ m ] .  Based on this, the Heinle/SchuBler 
method determines N transfer functions L k , v ( p )  as illus- 
trated in Fig. 3. If the L k , y ( p )  are assembled according to 
(7) and (8), we obtain an M . N point frequency spectrum 
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I , k ( p ) .  At this point we proceed as in section 2, using sam- 
pled versions of ( I  )-(3). Note that spectra of subsampled 
signals have M frequency points, while fullband signals are 
represented by N . M point spectra. 

The PSD of the k-th subband MMSE signal is given by 

N 30 29 28 27 
calc. 31.04 39.57 36.21 47.10 
meas. 31.08 39.46 36.23 47.13 
calc. 33.75 38.58 38.22 51.13 

I 
p E [O..M-l] , 

26 s. m. 
57.00 no 
57.00 no 
49.45 ves 

where W k ( p )  equals (2), sampled at N . M  frequency points 
12 = &p., From (9) the minimum subband error variance 
can be obtained by an inverse Wiener-Kintchine transform, 

meas. 
sim. 

. M-1 

33.78 38.53 38.19 51.15 49.44 yes 
29.5 34.2 36.0 36.1 37.0 

4.2. Fullband Error Signal 

Using the Heinle/Schufller method, an implemented syn- 
thesis filter bank can be measured similarly to the analysis 
filter bank as described in Sec. 3. Thereby, kth bandpass 
( ;k(p) of the synthesis bank can be assembled according 
to Fig. 4 from N separately measured transfer functions, 
where N is te upsampling factor. 

Once the alias spectra LL1laS(p) and the transfer func- 
tions of the synthesis filters, G k ( p )  are known, it is straight- 
forward to calculate the minimum error PSD S,"d'"'(p) of 
the output signal e [ n ]  by applying (4), evaluated at N . M 
frequency points, i.e. let Q = &p in (4). Finally as in 
( lo ) ,  the fullband MMSE is obtained by an inverse Wiener- 
Kintchine transform, 

M-1 
1 

MMSE = - S ~ ~ " ' ( p )  
p=O 

M 

4.3. Practical Examples 

To demonstrate the prediction of error limits, in a first ex- 
ample we compare the measured fullband error PSD against 
simulated results of a system identification with a A' = 8 
channel GDFT filter band decimated by N = 7. The simu- 
lation was performed using a complex valued NLMS algo- 
rithm with a sufficient number of adaptive filter coefficients, 
a small stepsize (0.0.5), and white noise excitation. For il- 
lustration purposes, a system to be identified contained a 
very dominant pole-pair at Q = 6. The grey curve in 
Fig. 6 shows the PSD of the residual fullband error signal 
after 2 . lo5 iterations. A prediction of the minimum er- 
ror PSD was performed according to Secs. 4.1 and 4.2 on 
the same system, and is shown in Fig. 6 as a black curve. 
Apparently, it forms a tight lower bound for the residual 
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Figure 6. simulated and measured fullband 
error PSD 

normalized freqency 

error PSD obtained by simulation. Differences between 
predicted and simulated curve (particularly in the lowpass 
band, 52 = 0 . . .:) are due to insufficient adaptation around 
the original signal's peak and at band egdes, where large 
spectral dynamics cause the NLMS algorithm to converge 
only slowly [ l  1,6]. 

The second example will illustrate the MMSE predic- 
tion using an acoustic echo cancelling application. The un- 
known system is a room impulse reponse with a length of 
2000 coefficients, which has to be identified by an SAF sys- 
tem using a Ii' = 32 band GDFT filter bank. For a num- 
ber of different decimation ratios N ,  the filter banks were 
optimized for acoustic echo cancellers [7].  Tab. 1 compares 
the analytically calculated fullband MMSE (Sec. 2) with the 
measured values (Sec. 4). For the upper two rows in Tab. 1, 
MMSE predictions based on both analytic and measured 
methods are obtained with a white source model (s. m.), 
while for the next two a spectral model of the room response 
was employed as source model. The last row shows simula- 
tion results with the NLMS algorithm using a large step size 
(0.3) and a sufficient number of adaptive coefficients. The 
MSE was evaluated after the adaptive fiters had converged. 

The measured results favourably compare to the analyt- 
ically predicted ones, and form are a lower bound for the 
simulation results. For N 2 28 the difference between sim- 
ulation and predictions is mainly due to the large step size 
which leads to an excess error [ I  I] .  For N 5 27 other ef- 
fects than aliasing limit the final error. In a practical system 
design, this result suggests not to choose the filter banks 
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with N 5 27, as a further reduction of aliasing does not 
improve the overall SAF performance significantly. 

N 30 29 28 
calc. -24.54 -44.26 -29.81 
meas. -24.55 -44.26 -29.81 
sim. -23.28 -43.14 -28.80 

5. Measuring Model Accuracy 

21 26 
-63.94 -41.43 
-63.94 -41.43 
-63.65 -41.04 

In Sec. 2.2 we have discussed how the distortion of the 
filter banks limits the model accuracy of the adapted S A F  
system. In the following, we introduce a method to perform 
this analysis by measuring an already implemented system. 

If an implemented analysis-synthesis filter bank system 
as given in Fig. 2 exhibits a sufficiently low aliasing level 
in the subbands (which may be checked using the measure- 
ment procedures introduces in Sec. 4), the overall filter bank 
appears as an LTI system and can be characterized by a sin- 
gle transfer function, T ( e j a ) .  This transfer function can 
again be assembled from measured components using the 
Heinle/SchuRler method, following the approach outlined 
in Fig. 4. Its discretely sampled version, T ( p ) ,  can now be 
used to calculate the error in power complementarity, 

which gives the lower limit in accuracy for the modelling 
capability of the SAF system in form of a quadratic er- 
ror term at M frequency points s1, = g ~ .  It should be 
noted that (12) mainly considers amplitude distortion which 
is sufficient for linear phase filter bank systems. Otherwise, 
(12) also has to accommodate for phase distortion. 

To verify the measured error limit in modelling accu- 
racy, we compare it with both simulations and the analyt- 
ical prediction method in [ 101 for a number of different fil- 
ter banks in Tab. 2. For the simulation part, equivalent full- 
band models have been reconstructed from adapted filters in 
an RLS system identification set-up. The reconstruction er- 
ror is given by the reconstructed model and the “unknown” 
system s[n].  Obviously, analytical and measured limits are 

Table 2. Model reconstruction error (in [de]) 
of an SAF with GDFT filter bank 

virtually identical and form a tight lower bound for the mod- 
elling error attained in the simulations. 

6. Conclusions 

We have presented an accurate prediction of the lower 
limit for adaptation of subband adaptive filter systems based 

on aliasing measurements of the employed filter bank. Our 
measurement procedure does not require an explicit knowl- 
edge of the filter banks and can even be applied to imple- 
mented systems. The appeal is that for SAF applications 
such as acoustic echo cancellation, the performance limits 
imposed by given filter banks can be easily verified without 
time-consuming simulations. 
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