Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Reversible acetonitrile-induced inactivation/activation of thermolysin

Ulijn, R.V. and Janssen, A.E.M. and Moore, B.D. and Halling, P.J. and Kelly, S.M. and Price, N.C. (2002) Reversible acetonitrile-induced inactivation/activation of thermolysin. Chembiochem, 3 (11). pp. 1112-1116. ISSN 1439-4227

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Thermolysin is catalytically inactive in mixtures or 70-15% acetonitrile in aqueous buffer. Unexpectedly, dilution of the inactive enzyme with acetonitrile leads to complete recovery of the catalytic activity in a similar way to dilution with aqueous buffer. Circular dichroism and fluorescence studies of thermolysin in the same solvent mixtures reveal discontinuous changes in the overall secondary and tertiary protein structure that correlate well with the reversible differences in catalytic activity. The spectra on either side of the minimum activity point are different from each other, a fact indicating that the enzyme may be able to access two active conformations which are thermodynamically stable in different solvent environments.