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TRACT 
In this paper we introduce a recognition and reconstruction 
method for late auditory evoked potentials (AEPs) using 
wavelet analysis. AEPs are part of the Electroenceiphalo- 
gram (EEG) in reaction to acoustic s t i n n d  and are used 
for diagnostic purposes. The decomposition of the EEG 
measurement data into subbands can yield a parameteriza- 
tion of the AEP using a sinall number of' significant coeffi- 
cients, which can be determined by surveying distributions 
of the transform coefficients. This method is more reliable 
than traditional means, and additionally offers the possi- 
bility of reconstructing potential AEPs by performing an 
inverse transform on significant coefficients. 

1. ~~~~~~U~~~~~~ 

In audiometry, auditory evoked potentials (AEPs) are used 
to obtain an objective audiogram. AEPis form part of the 
Electroencephalogram (EEG) as reaction to an acoustic 
stimulus, and can therefore represent hearing ability inde- 
pendently of the active cooperation or !subj'ective impres- 
sion of the experimentee [I]. Within the AEP, ordy the 
frequency specific late reactions from the cortex are of in- 
terest, appearing 20 ms to 400 ms after the stimulus has 
been given. The main inconvenience of late AEPs is the 
background noise in the EEG caused by other nervous pro- 
cesses in the cortex, resulting in an extremely poor SNR. 
Further problems are raised by the non-statbnarity of the 
REP, its dependence on the tone level and 'differences be- 
tween individuals. Referring to an objective audilogram, 
this objectivity is only related to the experimentee, as the 
data still has to be evaluated by an operator and thus a 
decision is based on his experience of recognizing certain 
features within the curves, and the quality of the data. 

The main effort in research of late AEPs is therefore to 
find parameters and methods that help indicate the pres- 
ence of an AEP in the EEG. Traditional methods range 
from synchronous averaging and calculating of cross-corre- 
lations [l] to methods using Fourier coeiRicients, cro,ss-cor- 
relation coefficients of partial averages, power ratio' of the 
normal average compared to an average, where every sec- 
ond measurement is weighted with a minus sipp (response to 
noise ratio), and the cross-correlation of the ensembiie aver- 
age with a given pattern, as described in 130th et al. [2], [3].  

Bartnilk e t  al. [4] were the first to apply a discrete wave- 
let transform (DWT) to reconstruct evoked potentials. Hav- 
ing calculated the transform coefficients of a number of EEG 
measurements, they identify five coefficients with which a 
reconsctruction of the sus1Jected contained evoked pokential 
is then performed, and an intuitive comparison with the en- 
semble average is done. The main drawbacks of their work 
are the assumption that the basic parameters of the poten- 
tial can be. identified using always the same five coefficients, 
a very smidl set of measurements to check the reliability of 
their method, and no quantitative assessment of the recon- 
structed data. 

Ba.sed on the idea of' Bartnik et al. of calculating the 
DWT of EEG measurernents and on some knowledge of 
AEPs and, EEG measurements described in Sec. 2, we de- 
rive a method for identifying transform coefficients that are 
"significant" for an AEF>, where this significance is evalu- 
ated statistically [5]. The decision of whether an AEP is 
contained in the EEG or not is then based on the presence 
of any significait coefficients. Afterwards, a reconstruction 
can be performed by applying an inverse DWT to the coef- 
ficients that, have been assigned significance. This is subject 
of Sec. 3, while Sec. 4 draws conclusions and discusses the 
practical .value of the presented method. 

A late AEP appears as a low frequency wave of 3-8 Hz 
[2] in the EEG. Its maximum is usually around 100 ms 
after t,he stimulus, dtboiigh this latency varies for &fferent 
tone levels, and can even change slightly within a set of 
measurements. As the tone level approaches the hearing 
threshold, the latency becomes larger and the amplitude 
diminishes, as it can be seen in the ensemble-averaged EEG 
measurements Fig. 1, which correspond to a person with 
normal hearing. 

The shape of the REP varies greatly between individu- 
als, particularly if their brains are not fully developed, eg 
for children who show very large latencies. In the clinical 
practice, the majority of the cases exhibits an unusual AEP 
patteirn that is difficult of detect for an operator, and thus a 
r e c o ~ t i o n  method is most wanted. Therefore, any method 
should bt: based on as few assumptions as possible. 
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Figure I: averages of 100 sweeps each, with (solid) and 
without (dotted) given stimulus (sine-burst of 1kHz). 

The EEG for our work is a measured voltage between 
forehead and mastoid, which is pre-processed and sampled 
at 640 Hz. Synchronized to a stimulus, a sequence of 800 ms 
is recorded, yielding 512 samples. In the following sections, 
such a single synchronous sequence is termed sweep. 

3. WAVELET ANALYSIS OF EEG 
MEASUREMENTS 

3.1. Applying the Wavelet Transform 

A dyadic wavelet decomposition of sweeps uses Mallat’s 
pyramidal algorithm for multi-resolution analysis [6]. It is 
based on two sets of subspaces of L2(R), V,r; and 0 2 k r  

where . . .VZk.+l 3 Vzk 3 v 2 k - 1  . . . and 0,; n O p  = 0, 
V i  # k E 2. V,k and 0 , k  are mutually exclusive, VZk n 
0 , k  = 8, and their sum is dense in & k + l  ,V2k U 0 , k  = 
V Z k + l  , Vk E z. Furthermore, V2k I k + o o  is dense in L2(R). 
Orthonormal bases for the spaces Vzk and 02r, are spanned 
by wavelets $k,n(t) = 2k’2$(2k( t - -n) )  and scaling functions 
$ k + ( t )  = 2 ” I Z d ( P ( t  - n)), respectively, for I C ,  n E Z. 

A signal f ( t )  can be projected onto these subspaces of 
ILZ(R) by weighting the basis functions with coefficients 
a k ( n )  and - the wavelet coefficients - pk(n), which are 
calculated by scalar products of f ( t )  with $ k , n ( t )  and 
& k p ( t )  , respectively, yielding functions A 2 k f ( t )  and D,kf(t), 

Figure 2: pyramidal decomposition of a signal into coarser 
approximations A2k and details D2k (Mallat). The starting 
sequence is A20 f( t). 

where A,kf(t) E v z k  is a coarse approximation of f( t)  
and D 2 k f ( t )  E 0 2 k  is the detail information that is lost 
when going from a less coarse approximation f( t )  t o  
A2* f ( t ) .  

Mallat [6] derives an iterative computation of coeffi- 
cients: starting from a coefficient set cyo(n)  of A , o f ( t ) ,  sub- 
sequently cyk(n) of coarser approximations can be obtained 
by lowpass filtering of the coefficients, while the wavelet 
coefficients p k - , ( n )  are yielded by a highpass filter oper- 
ation on c~k(n) .  The filter Coefficients can be calculated 
in dependence on $ ( t )  and 4 ( t ) .  The resulting pyramidal 
scheme for the computation of the wavelet coefficients is 
shown in Fig. 2. It can be implemented as a critically dec- 
imated octave filter bank. As the bases of V2k and 0 , k  

are orthonormal, a unique inverse transform exists, which 
is calculated by going through the pyramidal algorithm in 
a reverse direction. 

A start sequence cro(n)  of A,of ( t )  should ideally be 
computed by scalar products of the continuous time signal, 
f ( t ) ,  with translated scaling functions q50,n(t-n>, n E Z. As 
the time duration of $ ( f )  is comparably short to the wave 
lengths of interest, and because of JTa +(t)dt  = 1 [7], we 
can intuitively view $( t )  as a Dirac impulse, such that the 
start sequence is simply the sampled discrete time version 

Some problems arise, as the sweeps are finite intervals 
and important low frequency information is contained close 
to the beginning of a sweep. The analysis of the low fre- 
quencies requires a filter bank of considerable depth, such 
that with zero-padding most of the important features are 
distorted by transients. If the sweeps are extended periodi- 
cally, the filters a r e  operated in steady state, distortions are 
suppressed and the periodicity is preserved in the output 
data. Circular convolution has the disadvantage of discon- 
tinuity, which causes leakage of information from the end 
to the beginning of the sweeps, and vice versa. Best results 
could be obtained using a symmetric extension, where the 
resulting waveform is svmmetric to the end points of the 

of f (4 .  
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To yield a qualitative measure for this intuitive differ- 
ence of distributions, we define a selectivity value. Based 
on two different conditional probability densities p(sla) and 
p(zlZ), where the random variable 5 is the value of the 
wavelet coefficient given that either a stimulus of a cer- 
tain level (U) or no stimulus (Q) has been presented to the 
expenmentee prior to recording a sweep, this value is cho- 
sen according to Fig. 4 .  Assuming for the mean values 
p+ >_ pzlx w.l.o.g., we measure the distributions P(zla) 
and 1 - P(zlZ) for every coefficient. By determining the 
intersection of both distributions, we find the optimum de- 
cision threshold zopt, at which we yield the total error to be 
e = (a  +/3)/2, where a and ,f3 are the likelihoods for a false 
decision for a or Ti, under the assumption of equal likely Q 

and E. In case pr la  < ps[;;, the total error can be calculated 
from the intersection valiue e’ such that e = 1 - e’. 

The selectivity value now is this total minimum value, 
which covers the interval [0,0.5], with small values refer- 
ring to a good separability of the distribution, while values 
close to 01.5 indicate indifferent distributions. By setting a 
threshold for this selectivity value, wavelet coefficients can 
be distinguished by their relative frequencies to be “signif- 
icant” or “insig&cant” in contributing to an AEP. If the 
threshold is passed for any of the coefficients, an AEP is 
assumed in the EEG. 
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Figure 3: relative frequency distribution of wavelet coef- 
ficients of detail D2--7. The white bars refer to it given 
stimulus, while filled bars mark sweeps without AEIP. 

sweep sequence, although this imposes the restriction to 
use symmetric wavelets and hence linear phase filters only 
[8 ] ,  and has slight implications for the linearity of the filter 
bank operation and the validity of Parseval’s Theorem [5 ] .  
Apart from the symmetric wavelet described by MaUat [6], 
symmetric biorthogonal wavelets listed in [El] and [‘3] have 
been used for the analysis, but however give poorer results. 

3.2. Processing of Transform Coeflicients 

The reconstruction of single evoked potentials as proposed 
in [4] from certain transform coefficients proved useless for 
late AEPs because of their poor SNR. Flather than basing 
a method on a single sweep, we fall back upon the statistics 
of a number of successive sweeps. 

Fig. 3 shows the relative frequency distribution of the 
four wavelet coefficients in detail D2-7 measured from 100 
sweeps, where blanc and filled bars refer to sweeps wtth and 
without given stimulus, respectively. Obviously, the statis- 
tics of the first coefficient indicates a ‘difference between 
sweeps with a suspected AEP and sweeps that cannot con- 
tain an AEP, while the distributions of the laker three coef- 
ficients are rather indifferent. It can therefore be concluded, 
that the first wavelet coefficient in contrilry to the others in 
DZ-7 must be “significant” for an AEP. 

Figure 4: two different probability densities (a) and the 
according distributions (b), from which the selectivity value 
is derived graphically. 

3.3. Test Resul t s  a n d  Reconstruct ion 

Tests on EEG measurement series obtained from 40 experi- 
mentees have been carried ouh, of which about half the mea- 
surements have recorded the EEG without any given stim- 
ulus. Significant transform coefficients could almost only 
be found in the details D2-6 (4 coef., frequency band ap- 
prox. 5-10Hx) and D2-7 (8 coef., frequency band approx. 
2.5-5Bz), such that the examination of distributions can be 
restricted to these 12 coefficients, which agrees with the fre- 
quency range reported in [2]. A comparison with methods 
described in 110th e t  al. [a, 31 is given in the following table 
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Figure 5 :  ensemble averages compared to reconstruction 
with relevant coefficients 

4. CONCLUSION 

A new method for the recognition of late AEPs has been 
presented. The DWT offers a good parameterization of 
AEPs by a small number of coefficients, which is exploited 
to identify these coefficients by their distribution. 

The examination of distributions includes 12 coefficients 
and is free of any  assumptions concerning their distribu- 
tions or the latency of the AEP. The restriction to a lim- 

ited frequency band is reasonable, as it has little effect on 
the recognition and improves speed greatly, such that data. 
can be evaluated on-line to the measurements. A new pos- 
sibility compared to other AEP indication methods is the 
reconstruction with significant coefficients by means of an 
inverse transform. 

Although an automatic recognition is still not possible, 
as parameters like the threshold for decisions have to be 
chosen by an operator, as it has to be done with all tradi- 
tional means, the operator is given an additional support 
for his or her decision. 

Current research examines the use of sequential testing 
[lo] to be included, ,which will add an analytic measure for 
the statistical reliability and is thus expected to shorten 
the time of examinations, which would be very beneficial to 
patients. 
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