Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Investigation into omacetaxine solution stability for in vitro study

Marenah, Lamin and Allen, Elaine and Mountford, Joanne and Holyoake, Tessa and Jorgensen, Heather and Elliott, Moira (2012) Investigation into omacetaxine solution stability for in vitro study. Biomedical Chromatography, 26 (5). pp. 545-547. ISSN 0269-3879

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Omacetaxine is a natural product extract originating from Chinese medicine and finding therapeutic use as a potent myelosuppressive agent in leukemia. When planning in vitro cell biology experiments to assess omacetaxine activity against primary leukemic stem cells, it became apparent that the literature rarely describes the in vitro stability of the molecule, although accessible chromatographic methods have been published. Clearly whole organisms vs their component cells will differ in the way in which they handle xenobiotics, with the latter more dependent on physiochemical parameters such as pH and temperature in the absence of active metabolism or excretion. This could impact on the cells’ experience of drug in culture. We therefore report here on examination of a modified, high-performance liquid chromatography (HPLC) method with assessment of degradant production from a 72 h solution stability study, clearly demonstrating that omacetaxine is highly stable in representative cell culture conditions (37 °C, neutral pH) and persists for many days in marked contrast to its short-half life in vivo.