
Initial Results on an MMSE Precoding and

Equalisation Approach to MIMO PLC Channels

Stephan Weiss∗, Nicola Moret†, Andrew P. Millar∗, Andrea Tonello† and Robert W. Stewart∗

∗Dept of EEE, University of Strathclyde, Glasgow G1 1XW, Scotland, UK

{stephan,bob}@eee.strath.ac.uk
†Dipartimento di Ingegneria Elettrica Gestionale Meccanica, Universitá di Udine, Udine, Italy
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Abstract—This paper addresses some initial experiments using
polynomial matrix decompositions to construct MMSE precoders
and equalisers for MIMO power line communications (PLC)
channels. The proposed scheme is based on a Wiener formulation
based on polynomial matrices, and recent results to design and
implement such systems with polynomial matrix tools. Applied
to the MIMO PLC channel, the strong spectral dynamics of the
PLC system together with the long impulse responses contained
in the MIMO system result in problems, such that diagonlisation
and spectral majorisation is mostly achieved in bands of high
energy, while low-energy bands can resist any diagonalisation
efforts. We introduce the subband approach in order to deal
with this problem. A representative example using a simulated
MIMO PLC channel is presented.

I. INTRODUCTION

Many transceiver techniques such as OFDM or optimal

filter bank based systems perform block processing [1], [2],

whereby degrees of freedom are invested into a guard interval

that enables to suppress inter-block interference (IBI). The

remaining design can then utilise elegant linear algebraic

techniques to achieve optimality in various senses, such as

by employing a singular value decomposition of the resulting

channel matrix. By applying IBI cancellation first rather than

trading it off against various other system errors, error terms

are not balanced. Recent systems considering this problem

include e.g. [3], [4].

In this paper, we consider a minimum mean square error

(MMSE) approach for filter bank design of precoding and

equalisation targetting both inter-symbol interference (ISI) and

structured noise that has been suggested in [5]. While [5]

chooses an elegant polynomial matrix formulation, the lack

of tools to address the resulting design problem have led to

significant simplifications. Here, we explore the utilisation of a

polynomial eigenvalue decomposition in [6], [7], which limits

the precoder to a paraunitary design. The paraunitarity will

be shown to have beneficial consequences, such as simple

power control by well-known waterfilling algorithms [8], as

well as the application of inversion techniques for polynomial

matrices, which need to be solved for the precoder and

equaliser design according to the Wiener approach in [5], [9].

The precoder and equalisation design is based on a formula-

tion by Mertins [5], which is stated in Sec. III. In Sec. IV, some

thoughts are provided on the implementation of this design.

Inital results of this approach are discussed in Sec. V with an

application to simulated MIMO power line channel. Finally,

conclusions are drawn in Sec. VI.

A. Notation

Below, boldface uppercase variables such as H will indicate

matrices, while boldface lowercase or underlined letters rep-

resent vector valued variables, such as v or V . The operator

{·}H indicates Hermitian transpose. For polynomial matrices,

such as H(z) =
∑

n H[n]z−n, the parahermitian operator {̃·}
implies Hermitian transpose of all matrices and time reversal,

i.e. H̃(z) = HH(z−1) =
∑

n HH[n]zn. For abbreviation,

transform pairs are denoted H(z) •—◦ H[n]. The z-transform
is here used for notational purposes only; no actual transfor-

mation is carried out, and all calculations will be performed

in the time domain.

II. SYSTEM MODEL

We assume a PLC channel utilising M wires for transmis-

sion — e.g. phase, neutral, and earth in a single-phase system

— with some degree of cross-coupling, such that an M × M

MIMO transmission system C[n] arises, whereby

C[n] =









c0,0[n] c0,1[n] . . . c0,M−1[n]

c1,0[n] c1,1[n]
...

...
. . .

...

c(M−1),0[n] c(M−1),1[n] . . . c(M−1),(M−1)[n]









,

(1)

with ci,j [n] being the channel impulse response between the

jth input and the ith output of the system. Additionally,

we consider multiplexing P subchannels across the MIMO

link C[n], which in term of notation can be represented by

demultiplexing the channel C[n] into a MP × MP matrix

H[n]. The structure of this channel matrix can be expressed

in the z-domain based on C(z) •—◦ C[n] by a block-pseudo-

circulant polyphase description H(z) •—◦ H[n]

H(z)=








C0(z) z−1CP−1(z) . . . z−1C1(z)
...

. . .
. . .

...

CP−2(z) C0(z) z−1CP−1(z)
CP−1(z) CP−2(z) . . . C0(z)








(2)

where Cp(z) =
∑

n C[nP + p]z−n.
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Fig. 1. System model with channel polyphase matrix H(z) and noise source
model A(z); the transceiver design comprises of a precoder P(z) and an
equaliser W(z).

Besides co-channel interference (CCI) and ISI caused by

H(z), the received signal is affected by additive noise. Sim-

ilar to the channel, the noise can be demultiplexed into P

subchannels. If the noise is Gaussian and broadband, then a

source model or innovations filter matrix A(z) ∈ CMP×K

can linearly relate the MP noise signals corrupting the receive

signal to K uncorrelated, mutually independent and identically

distributed Gaussian processes with unit variance [10], which

are denoted by V (z) ∈ CK •—◦ v[m] in Fig. 1. Therefore,

the noise power spectral matrix Rw(z) ∈ CK×K(z) as seen

at the receiver becomes

Rv(z) = A(z)Ã(z) . (3)

As a consequence of (3), Rv(z) is parahermitian, i.e. Rv(z) =
R̃v(z).

The matrices P(z) ∈ CMP×NP (z) and W(z) ∈
C

NP×MP (z) describe the precoder and equaliser, respectively.
Due to potential oversampling, i.e. N ≤ M , redundancy is

introduced into the transmitted signal S[n], which can be

exploited to mitigate structured noise and strong modes of the

channel transfer function. The design of the linear precoder

and equalisation systems P(z) and W(z) are the focus of

this paper.

III. MMSE MIMO PRECODING AND EQUALISATION

APPROACH

The precoder and equalisation design is based on a single-

input single-output (SISO) formulation by Mertins [5]. For

an arbitrarily selected precoder matrix P(z), according to a

Wiener filter formulation in the z-domain in [5], the MMSE

solution for W(z) can be stated as

W(z) = Re(z) · P̃(z)H̃(z)R−1
v (z) , (4)

whereby Re(z) is given by

Re(z) = σ2
[

I + σ2P̃(z)H̃(z)R−1
v (z)H(z)P(z)

]
−1

, (5)

with σ2 being the (equal) power of the signals in X[n] in Fig. 1
that feed into the precoder. Assuming that W(z) has been

selected as in (4), the power spectral matrix Re(z) •—◦ Re[τ ]

defines the MMSE, ξMMSE, as

ξMMSE = tr{Re[0]} (6)

= tr







1

2π

2π∫

0

R(ejΩ)dΩ






. (7)

With W(z) selected as the Wiener solution according to

(4), the precoder P(z) can be chosen such that the MSE in

(6) is minimised. While in [5], the z-domain notation is chosen

for its flexibility, the lack of polynomial matrix tools required

a simplification for the solution by creating a non-polynomial

precoder P0 = P(z). This is based on a trick exploited by

most block-based transmission systems such as OFDM or

optimal filter bank-based precoders and equalisers [1], [2],

where the multiplexing factor P is selected larger than the

channel order L.

With P > L, the polyphase components Cp(z) in (2)

become zero order, and the channel matrix H(z) reduces to

a first order polynomial, where terms with z−1 are restricted

to the right upper triangular corner of H(z) as seen in (2).

Using a guard interval, or employing leading or trailing zeros

in the transmitter or receiver [1], [2] allows one to extract

the zero order component of H(z). The insertion of a guard

interval means that the filter bank is oversampled, and the

degrees of freedom associated with the redundancy of this

system are utilised to create a zero order transmission matrix

thus eliminating IBI.

For the MMSE system in [5] defined by (4) and (5),

an implicit selection of P > L leads to a rectangular —

i.e. oversampled — selection P(z) = P0 such that the ex-

pression PH
0 H̃(z)R−1

v (z)H(z)P0 turns into a non-polynomial

formulation.

IV. INVERSION OF PARAHERMITIAN MATRICES

The work on an eigenvalue decomposition for polynomial

matrices in [7] has stimulated a number of tools for polynomial

matrix algebra such as the inversion of parahermitian matri-

ces [11] required in (4) and (5), which can address the above

MMSE formulation for precoder and equaliser more directy.

The required tools are addressed below.

A. Polynomial Eigenvalue Decomposition

A polynomial eigenvalue decomposition of a parahermitian

matrix R(z) ∈ CM×M (z) is defined as

R(z) = Q(z)Λ(z)Q̃(z) (8)

whereby Q(z) ∈ CM×M (z) is paraunitary, i.e.

Q(z)Q̃(z) = Q̃(z)Q(z) = I (9)

and Λ(z) ∈ CM×M (z) is parahermitian and diagonal with

diagonal elements Λi(z) ordered such that the power spectral

densities Λi(e
jΩ) fulfill

Λi(e
jΩ) ≥ Λi+1(e

jΩ), ∀Ω, i = 0 . . . (M − 2) . (10)

The property (10) is called spectral majorisation. While a

practical decomposition algorithm developed in [7] will be
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Fig. 2. Power spectra Λi(ejΩ) of a spectrally majorised matrix R(z).

discussed later, an example a the spectrally majorised Λ(z) is
given in Fig. 2.

B. Polynomial Inverse

Based on the PEVD, the inverse can be formulated

R−1(z) = Q(z)Λ−1(z)Q̃(z) . (11)

It is straightforward to show that

R−1(z)R(z) = R(z)R−1(z) = I . (12)

The paraunitarity of Q(z) plays a vital role in the simplicity

of this inverse. It remains to invert the diagonal polynomial

matrix Λ(z), which can be achieved by inverting all elements

along on the main diagonal,

Λ−1(z) =








Λ−1
0 (z)

Λ−1
1 (z)

. . .

Λ−1
M−1(z)








, (13)

whereby Λi(z)Λ−1
i (z) = 1. Next, a practical decomposition

to determine Q(z) will be reviewed, before methods to invert

the on-diagonal elements Λi(z) are discussed in Sec. IV-D.

C. Sequential Best Rotation Algorithm

SBR2 is an iterative broadband eigenvalue decomposition

technique based on second order statistics only and can be seen

as a generalisation of the Jacobi algorithm. The decomposition

after L iterations is based on a paraunitary matrix UL(z),

UL(z) =

L∏

i=0

QiΓi(z) (14)

whereby Qi is a Jacobi rotation and the matrix Γi(z) a

paraunitary matrix of the form

Γi(z) = I− viv
H
i + z−∆iviv

H
i (15)

with vi = [0 · · · 0 1 0 · · · 0]H containing zeros except for

a unit element in the δith position. Thus Γi(z) is an identity

matrix with the δith diagonal element replaced by a delay

z−∆i .

At the ith step, SBR2 will eliminate the largest off-diagonal

element of the matrix Ui−1(z)R(z)Ũi−1(z), which is defined

by the two corresponding sub-channels and by a specific

lag index. By delaying the two contributing sub-channels

appropriately with respect to each other by selecting the

position δi and the delay ∆i, the lag value is compensated.

Thereafter a Jacobi rotation Qi can eliminate the targetted

element such that the resulting two terms on the main diagonal

are ordered in size, leading to a diagonalisation and at the same

time accomplishing a spectral majorisation.

SBR2 only achieves an approximate diagonalisation after

a finite number of iteration steps when off-diagonal elements

are smaller than a threshold ϑ,

R(z) = Q(z) (Λ(z) + E(z)) Q̃(z) (16)

with Λ(z) diagonal and E(z) a non-sparse error matrix

with ‖E(z)‖∞ ≤ ϑ. Here, the infinity norm ‖R(z)‖∞ is

defined as returning the largest element across all matrix-

valued coefficients of the polynomial R(z),

‖R(z)‖∞ = max
ν

‖Rν‖∞ . (17)

An alternative stopping criterion is to define a maximum

number of iterations for SBR2 [6], [12].

D. Inversion of Autocorrelation Sequences

This section addresses the inversion of on-diagonal ele-

ments of Λ(z). These elements have the properties of auto-

correlation sequences, i.e.

rii[τ ] = r∗ii[−τ ] ◦—• Rii(z) = R∗

ii(z
−1) .

This symmetry can be exploited in the inversion process, since

the inverse of a linear phase SISO system must also be a

linear phase system and therefore have the same symmetry

properties [13]–[15]. From Rii(z)R−1
ii (z) = 1 we deduce

rii[τ ]∗sii[τ ] = δ[τ ] where sii[τ ] ◦—• Sii(z) = R−1
ii (z) is the

inverse of the auto-correlation sequence. We here use S(z) to

describe the inverse of R(z) due to potential truncation errors

in the methods described below.

E. Time Domain / MMSE Inversion

The time domain inversion is based on a convolutional

matrix desciption of the convolution of an auto-correlation

sequence r[n] and its inverse s[n],















r[N ]
...

. . .

r[−N ] r[N ]
. . .

. . .

r[−N ] r[N ]
. . .

...

r[−N ]


























s[−T ]
...

s[0]
...

s[T ]











=















0
...

0
1
0
...

0















(18)
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or

As = d

with A ∈ C
(2T+2N+1)×(2T+1), s ∈ C

(2T+1) and d ∈
Z(2T+2N+1). A solution can be obtained via the left pseudo-

inverse,

s = (AHA)−1AHd (19)

This solution should have the same symmetry properties

as r[n], and any deviation from symmetry must be due to

numerical problems in the inversion process. The symmetry

error

ǫ = ‖s− Js∗‖2
2 (20)

should be as small as possible.

A minimum mean square error solution to (19) can be ob-

tained by including the noise-to-signal ratio for regularisation

purposes.

1) Inversion with Explicit Symmetry Constraint: An ill-

conditioned A can lead to an asymmetric solution in (19).

Hence it is advantageous to enforce symmetry in the setup.

This can be performed by a Lagrangian approach, which

solves the constrained optimisation problem

find min
s

‖As− d‖2
2 (21)

subject to s = Js∗ . (22)

Instead of solving this Lagrangian problem, the next section

discusses a direct approach of embedding the constraint into

the formulation.

2) Inversion with Implicit Symmetry Constraint: The sym-

metry condition can be incorporated into the system equation

by formulating
[

Re{A} −Im{A}
Im{A} Re{A}

]

·

[
Re{s}
Im{s}

]

=

[
d

0

]

.

In this, the inverse is implicitly constrained by only defining

half the response as

w =








s[−T ]
...

s[1]
1
2s[0]








with

Re{s} =





IT 0
0T 2
JT 0



Re{w} = M1Re{w} (23)

Im{s} =





IT 0
0T 0

−JT 0



 Im{w} = M2Im{w} , (24)

to reconstruct the real and imaginary part of the true solution.

Therefore the problem formulation becomes
[

M1Re{A} −M2Im{A}
M2Im{A} M2Re{A}

]

︸ ︷︷ ︸

Ac

·

[
Re{w}
Im{w}

]

=

[
d

0

]

︸ ︷︷ ︸

dc
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Fig. 3. PLC MIMO channel measurement sample H(ejΩ) over a frequency
range of 100MHz.

and the solution is reached via the pseudo-inverse

s = [M1 jM2]
(
AT

c Ac

)−1
AT

c dc .

The latter approach has been shown in [11] to be superior

in terms of precision and computation complexity to both the

unconstrained problem, as well as the formulation involving

explicit constraints.

V. SIMULATIONS AND RESULTS

In this section we present some initial results based on a

MIMO PLC channel model developed at the University of

Udine. This channel model generates channel responses based

on a bottom-up PLC channel simulator described in [16].

A representative 2 × 2 MIMO channel characterised by the

4 magnitude responses of the constituting SISO subchannels

Cij(e
jΩ) is shown in Fig. 3. The channel is simulated over a

bandwidth of 100MHz and exhibits severe frequency selectiv-

ity.

Assuming a much simplified noise model with corruption by

additive white Gaussian noise, the noise power spectral matrix

is given by a scaled identity matrix, and the denominator of

the Wiener solution yields

Re(z) = (I + σ2P̃(z)H̃(z)H(z)P(z))−1 . (25)

To minimise the MMSE, the terms in P̃(z)H̃(z)H(z)P(z)
need to be maximised, which can be achieved by constructing

the precoder matrix P(z) to support the dominant polynomial

eigenmodes of H̃(z)H(z). We first attempt this directly using

the H(z).

A. Direct Approach

The space-time covariance matrix R = H̃(z)H(z) in the

denominator of the MMSE cost function is characterised in

Fig. 4. The decomposition of this matrix is an inportant first

step to construct the precoder such that the denominator of
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Fig. 4. Space-time covariance matrix R = H̃(z)H(z),

the MMSE is maximised, e.g. by selecting the strongest poly-

nomial eigenmodes for transmission via P(z) by extracting

the corresponding polynomial eigenvectors from Q(z) [17].

The advantage of this approach lies in the paraunitarity of

the precoder matrix, thus preserving the transmit power, and

the fact that the denominator remains an approximately diago-

nalised matrix, therefore enabling a straightforward inversion

according to Sec. IV-D.

While the diagonalisation of the covariance matrix in

Fig. 5 appears successful, inspecting the power spectral matrix

R(ejΩ) in Fig. 6 reveals that the suppression of off-diagonal

terms is not great. Also, spectral majorisation is not satisfied

across the entire frequency range. The reason can be found

in Fig. 7, which shows the low-frequency component of the

power spectral matrix, where a large term will dominate the

MMSE calculations and therefore obstruct diagonalisation and

spectral majorisation in frequency bands where the energy is

low. In general, all of the simulated MIMO responses have

revealed similar problems due to the very large dynamic range

of the channel frequency responses.

The precoder would be designed from the paraunitary

polynomial matrix U(z), such that Re(z) is diagonal and can

be inverted using the method described in Sec. IV-D, thus

yielding the solution for the Wiener equaliser matrix W(z).

B. Subband Approach

In order to reduce the dynamic range, the MIMO system

is combined with a filter bank based transmultiplexer similar

to [18], whereby a decomposition into 14 bands oversampled

by a factor 16 is achieved using an oversampled filter bank

designed according to [11], [19]. The resulting MIMO systems

in the 1st and 8th subband are shown in Figs. 8 and 9.

Clearly the responses are significantly shorter, thus reducing

the numerical complexity of the required polynomial matrix

decompositions and inversions.
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Fig. 5. Space-time covariance matrix in Fig. 4 after approximate diagonali-
sation by SBR2.

0 0.2 0.4 0.6 0.8 1
−140

−120

−100

−80

−60

−40

−20
2
0
 l
o
g

1
0
 |
Γ

0
0
(e

jΩ
)|

normalised angular frequency Ω / π

0 0.2 0.4 0.6 0.8 1
−140

−120

−100

−80

−60

−40

−20

2
0
 l
o
g

1
0
 |
Γ

0
1
(e

jΩ
)|

normalised angular frequency Ω / π

0 0.2 0.4 0.6 0.8 1
−140

−120

−100

−80

−60

−40

−20

2
0
 l
o
g

1
0
 |
Γ

1
0
(e

jΩ
)|

normalised angular frequency Ω / π

0 0.2 0.4 0.6 0.8 1
−140

−120

−100

−80

−60

−40

−20

2
0
 l
o
g

1
0
 |
Γ

1
1
(e

jΩ
)|

normalised angular frequency Ω / π

Fig. 6. Power spectral matrix Γ(z) = Ũ(z)H̃(z)H(z)U(z) after approx-
imate diagonalisation by SBR2.

Fig. 10 depicts the 14 power spectral matrices arising from

the transmultiplexer. This can be contrasted against the power

spectra after applying SBR2 on the shortened MIMO system in

each individual subband, resulting in the systems highlighted

in Fig. 11. It is clear that compared to the fullband approach

in Fig. 6, the subband approach can further reduce the off-

diagonal components even at low gains in the presence of

high-energy bands, yielding an improved diagonalisation by

SBR2.

The enhanced spectral majorisation of the subband approach

is evident from the overlaid power spectra in Fig. 11. With en-

hanced diagonalisation and spectral majorisation, the denom-

inator term in (5) is also better diagonalised, enabling simple

polynomial matrix inversion by means of only inverting the

on-diagonal auto-correlation-like term rather than a full-blown
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Fig. 7. Low frequency detail of Fig. 6.
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Fig. 8. 1st subband of transmultiplexed MIMO system.

polynomial matrix inversion according the concatenation of

methods highlighted in this paper.

VI. CONCLUSION

Motivated by MMSE precoding and equalisation without

block-processing, we have extended a Wiener filter formula-

tion for polynomial matrices to the MIMO case and explored

some polynomial matrix algrebra, in particular the inversion

of polynomial matrices based on recent results derived from

a polynomial eigenvalue decomposition used for the inversion

of parahermitian matrices. The proposed approach has been

tested on some simulated PLC MIMO channels.

The diagonalisation achieved in the representative example

for a simulated MIMO PLC channel works well in regions

with sufficiently high gain in the power spectral density.

However, particularly at higher frequencies, which potentially

can be gainfully employed for PLC, the diagonalisation is
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Fig. 9. 8th subband of transmultiplexed MIMO system.
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Fig. 10. Concatenated power spectra across the 14 subbands of the
transmultiplexer.

insufficient to draw any advantage from the proposed method

directly. An improved scheme based on a subband approach

has been shown to yield much improved diagonalisation

and spectral majorisation, thus enabling the remaining re-

quired steps to design and implement a MIMO procoder

and equaliser. The subband approach relies on a filter bank

transmultiplexer scheme, which divides the channel matrix

into frequency bands with reduced dispersion and reduced

spectral dynamics. The reduced dispersion results in a signifi-

cant decrease in the cost of an algebraic polynomial matrix

algorithm, while the reduced spectral dynamics yield good

diagonalisation over a wide spectral range, thus enabling the

inclusion of higher frequency bands for PLC transmission in

the proposed precoding and equalisation scheme.
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Fig. 11. Concatenated power spectra across the 14 subbands of the
transmultiplexed MIMO system diagonalised by SBR2 algorithms operating
in every subband.
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Fig. 12. Overlaid power spectra of Fig. 11, highlighting the diagonalisaion
and spectral majorisation properties.
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