Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Mechanistic studies on the enzymatic processing of fluorinated methionine analogs by Trichomonas vaginalis methionine γ-lyase

Moya, Ignace A and Westrop, Gareth D and Coombs, Graham H and Honek, John F (2011) Mechanistic studies on the enzymatic processing of fluorinated methionine analogs by Trichomonas vaginalis methionine γ-lyase. Biochemical Journal.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

L-Trifluoromethionine (TFM), a potential prodrug, was reported to be toxic toward human pathogens that express L-methionine γ-lyase (MGL; EC: 4.4.1.11), a pyridoxal phosphate-containing enzyme that converts L-methionine to α-ketobutyrate, ammonia and methyl mercaptan. It has been hypothesized that the extremely reactive thiocarbonyl difluoride is produced when the enzyme acts upon TFM, resulting in cellular toxicity. The potential application of the fluorinated thiomethyl group in other areas of biochemistry and medicinal chemistry requires additional studies. Therefore a detailed investigation of the theoretical and experimental chemistry and biochemistry of these fluorinated groups (CF3S- and CF2HS-) has been undertaken to trap and identify chemical intermediates produced by enzyme processing of molecules containing these fluorinated moieties. MGL from Trichomonas vaginalis (TvMGL) and a chemical model system of the reaction were utilized in order to investigate the cofactor-dependent activation of TFM and previously uninvestigated L-difluoromethionine (DFM). The differences in toxicity between TFM and DFM were evaluated against Escherichia coli expressing TvMGL1, as well as the intact human pathogen, T. vaginalis. The relationship between the chemical structure of the reactive intermediates produced from the enzymatic processing of these analogs and their cellular toxicity are discussed.