Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

mTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex

Chan, Edmond Y (2009) mTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex. Science signaling, 2 (84). pe51.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

High nutrient availability stimulates the mammalian target of rapamycin complex 1 (mTORC1) to coordinately activate anabolic processes, such as protein synthesis, while inhibiting the cellular catabolism of autophagy. Positive regulation of protein synthesis through the mTORC1 substrates p70 ribosomal S6 kinase (p70S6K) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1) has been well characterized. The complementary inhibitory mechanism in which mTORC1 phosphorylates the autophagy regulatory complex containing unc-51-like kinase 1 (ULK1), the mammalian Atg13 protein, and focal adhesion kinase interacting protein of 200 kD (FIP200) has also been elucidated.