Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Preclinical assessment of strategies for enhancement of metaiodobenzylguanidine therapy of neuroendocrine tumors

Mairs, Rob J and Boyd, Marie (2011) Preclinical assessment of strategies for enhancement of metaiodobenzylguanidine therapy of neuroendocrine tumors. Seminars in Nuclear Medicine, 41 (5). pp. 334-44.

Full text not available in this repository. (Request a copy from the Strathclyde author)


By virtue of its high affinity for the norepinephrine transporter (NET), [(131)I]metaiodobenzylguanidine ([(131)I]MIBG) has been used for the therapy of tumors of neuroectodermal origin for more than 25 years. Although not yet universally adopted, [(131)I]MIBG targeted radiotherapy remains a highly promising means of management of neuroblastoma, pheochromocytoma, and carcinoids. Appreciation of the mode of conveyance of [(131)I]MIBG into malignant cells and of factors that influence the activity of the uptake mechanism has indicated a variety of means of increasing the effectiveness of this type of treatment. Studies in model systems revealed that radiolabeling of MIBG to high specific activity reduced the amount of cold competitor, thereby increasing tumor dose and minimizing pressor effects. Increased radiotoxicity to targeted tumors might also be achieved by the use of the α-particle emitter [(211)At]astatine rather than (131)I as radiolabel. Recently it has been demonstrated that potent cytotoxic bystander effects were induced by [(131)I]MIBG, [(123)I]MIBG, and [(211)At]meta-astatobenzylguanidine. Discovery of the structure of bystander factors could increase the therapeutic ratio achievable by MIBG targeted radiotherapy. [(131)I]MIBG combined with topotecan produced supra-additive cytotoxicity in vitro and tumor growth delay in vivo. The enhanced antitumor effect was consistent with a failure to repair DNA damage. Initial findings suggest that further enhancement of efficacy might be achieved by triple combination therapy with drugs that disrupt alternative tumor-specific pathways and synergize not only with [(131)I]MIBG abut also with topotecan. With these ploys, it is expected that advances will be made toward the optimization of [(131)I]MIBG therapy of neuroectodermal tumors.