Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Wireless monitoring system for hybrid power generation system

Oh, Jin-Sook and Bae, Soo-Young and Lee, Li-Young and Kwak, Jun-Ho and Kim, Jae Min and Johnstone, Cameron (2010) Wireless monitoring system for hybrid power generation system. In: Springer Proceedings in Physics. Springer Proceedings in Physics, 135 . Springer-Verlag Berlin, Berlin, pp. 91-98. ISBN 978-3-642-13623-8

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The number of Renewable Energy (RE) systems increases due to the low carbon energy policy in most of industrialised countries. In order to ensure the performance of RE sustainable and reduce maintenance costs, remote monitoring systems of RE plant condition and performance are essential. Wireless monitoring systems are easy to install and operate, but requires high cost in general. Radio Frequency technology is relatively cheap, but its transmission range is limited. It is a challenge to establish long range communication between RE plants and the monitoring centre in cost effective way. In this paper, a novel remote condition monitoring system for RE systems is presented, which exploits RF modems in the multi-point link network to make long range communication. The paper illustrates the overview of the proposed system and the results of the field tests implemented with PV+Wind and PV+Wave hybrid power generation systems at land and sea.