Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Limit, shakedown and ratchet analyses of defective pipeline under internal pressure and cyclic thermal loading

Chen, Weihang and Chen, Haofeng and Li, Tianbai and Ure, James Michael (2011) Limit, shakedown and ratchet analyses of defective pipeline under internal pressure and cyclic thermal loading. In: ASME Pressure Vessels & Piping Conference, PVP 2011, 2011-07-17 - 2011-07-21.

[img] PDF
Chen_HF_Pure_Limit_shakedown_and_ratchet_analysis_of_defective_pipeline_under_internal_pressure_and_cyclic_thermal_loadins_17_Jul_2011.pdf - Preprint

Download (452kB)

Abstract

In this study, the limit load, shakedown and ratchet limit of a defective pipeline subjected to constant internal pressure and a cyclic thermal gradient are analyzed. Ratchet limit and maximum plastic strain range are solved by employing the new Linear Matching Method (LMM) for the direct evaluation of the ratchet limit. Shakedown and ratchet limit interaction diagrams of the defective pipeline identifying the regions of shakedown, reverse plasticity, ratcheting and plastic collapse mechanism are presented and parametric studies involving different types and dimensions of part-through slot in the defective pipeline are investigated. The maximum plastic strain range over the steady cycle with different cyclic loading combinations is evaluated for a low cycle fatigue assessment. The location of the initiation of a fatigue crack for the defective pipeline with different slot type is determined. The proposed linear matching method provides a general-purpose technique for the evaluation of these key design limits and the plastic strain range for the low cycle fatigue assessment. The results for the defective pipeline shown in the paper confirm the applicability of this procedure to complex 3-D structures.