Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Receptor tyrosine kinase-G-protein-coupled receptor signalling platforms : out of the shadow?

Pyne, Nigel J and Pyne, Susan (2011) Receptor tyrosine kinase-G-protein-coupled receptor signalling platforms : out of the shadow? Trends in Pharmacological Sciences, 32 (8). pp. 443-450.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Receptor tyrosine kinases (RTKs) and G-protein-coupled receptors (GPCRs) can form platforms in which protein signalling components specific for each receptor are shared (owing to close proximity) to produce an integrated response upon engagement of ligands. RTK-GPCR signalling platforms respond to growth factors and GPCR agonists to increase gain over and above that which is normally produced by separate receptors. They can also function to change the spatial context of signalling in response to growth factor activation. The function of RTK-GPCR signalling platforms can be modulated with conformational-specific inhibitors that stabilise defined GPCR states to abrogate both GPCR agonist- and growth factor-stimulated cell responses. In this paper, we provide an opinion of the biology and unusual pharmacology of RTK-GPCR signalling platforms and make comparisons with a more traditional model of crosstalk between RTKs and GPCRs.