Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Receptor tyrosine kinase-G-protein-coupled receptor signalling platforms : out of the shadow?

Pyne, Nigel J and Pyne, Susan (2011) Receptor tyrosine kinase-G-protein-coupled receptor signalling platforms : out of the shadow? Trends in Pharmacological Sciences, 32 (8). pp. 443-450.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Receptor tyrosine kinases (RTKs) and G-protein-coupled receptors (GPCRs) can form platforms in which protein signalling components specific for each receptor are shared (owing to close proximity) to produce an integrated response upon engagement of ligands. RTK-GPCR signalling platforms respond to growth factors and GPCR agonists to increase gain over and above that which is normally produced by separate receptors. They can also function to change the spatial context of signalling in response to growth factor activation. The function of RTK-GPCR signalling platforms can be modulated with conformational-specific inhibitors that stabilise defined GPCR states to abrogate both GPCR agonist- and growth factor-stimulated cell responses. In this paper, we provide an opinion of the biology and unusual pharmacology of RTK-GPCR signalling platforms and make comparisons with a more traditional model of crosstalk between RTKs and GPCRs.