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Abstract This paper investigates new families of displaced, highly non-Keplerian orbits in the
two-body problem and artificial equilibria in the circular restricted three-body problem. The
families of orbits presented extend prior work by using periodic impulses to generate displaced
orbits rather than continuous thrust. The new displaced orbits comprise a sequence of individual
Keplerian arcs whose intersection is continuous in position, with discontinuities in velocity
removed using impulses. For frequent impulses the new families of orbits approximate continuous
thrust non-Keplerian orbits found in previous studies. To generate approximations to artificial
equilibria in the circular restricted three-body problem, periodic impulses are used to generate a
sequence of connected three-body arcs which begin and terminate at a fixed position in the rotating
frame of reference. Again, these families of orbits reduce to the families of artificial equilibria
found using continuous thrust.
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1. Introduction

The use of continuous low thrust propulsion to generate artificial equilibria was
apparently first proposed by Dusek (1966) who pointed out that a spacecraft could
be held at an artificial equilibrium point some distance from a natural three-body
equilibrium point. Later, others such as Austin et. al. (1977), Nock (1984) and
Yashko and Hastings (1996) noted that propulsive thrust can in principle be used
to displace a two-body orbit using continuous thrust normal to the orbit plane.
Forward (1984), Baig and Mclnnes (2008) and Heiligers (2010) have considered
displaced geostationary orbits using continuous thrust due to solar radiation
pressure. Such displaced two-body orbits will be termed non-Keplerian orbits
since the orbit plane does not contain the central mass.

Large families of displaced non-Keplerian two-body orbits have been
identified for spacecraft utilising both solar sail (Mclnnes, 1992a, 1992b) and
generic low thrust propulsion (Dankowicz, 1994, Mclnnes, 1997). More recently
displaced orbits have been investigated for a range of applications and propulsion
technologies (Mengali and Quarta, 2009, Gong et al, 2009). Studies have
determined the conditions for such orbits to exist, their stability properties and
their controllability (Mclnnes, 1997, 1998, Xu and Xu, 2009). Recently, a large
catalogue of such orbits was provided by McKay et al (2009) for motion around
planetary bodies.

Non-Keplerian two-body orbits are generated using low thrust propulsion
by finding conditions for artificial equilibria in a rotating frame of reference.
These equilibria then appear as displaced circular orbits when viewed from an
inertial frame (Mclnnes, 1997). Scheeres (1999) considered such hover orbits in a
frame of reference rotating with an asteroid. Later, work by Sawai et al (2002)
investigated conditions for stability and controllability of such orbits at irregular
shaped asteroids.

Conditions for artificial equilibria in the circular restricted three-body
problem can be found using solar sails (Mclnnes et al, 1994), generic low thrust
propulsion (Morimoto et al, 2007) and hybrid solar sail propulsion (Baig and
Mclnnes, 2008), while periodic orbits can be found about such artificial equilibria
were investigated by Baoyin and Mclnnes (2006), Waters and Mclnnes (2007),
Baig and Mclnnes (2009) and Farres and Jorba (2010). Of particular interest is the



case of low thrust propulsion where regions of stable artificial equilibria were
found by Morimoto et al (2007) which do not exist for the solar sail problem.
Further investigation of the stability of such artificial equilibria has recently been
provided by Bombardelli and Pelaez (2010).

In this paper, new families of displaced non-Keplerian orbits are generated
using impulsive, rather than continuous thrust. The use of impulse thrust was
considered by Nock (1984), Yashko and Hastings (1996), Mclnnes (1998), Hope
and Trask (2003) and Spilker (2003) to generate small displacements away from a
circular Keplerian orbit at linear order in the two-body problem. In this paper, the
more general problem is considered with arbitrarily large displacements. The
displaced non-Keplerian orbits are approximated by a sequence of individual
Keplerian arcs connected by impulses. The sequence of arcs is therefore
continuous in position, with discontinuities in velocity which are removed using
the impulses. For frequent impulses the families of orbits approximate the
continuous thrust non-Keplerian orbits found in previous studies. The conditions
for displaced non-Keplerian orbits using impulse thrust can be found by
linearising the dynamics of the two and three-body problems in the vicinity of an
arbitrary reference point in a rotating frame of reference. While the motion of the
spacecraft relative to the reference point is considered at linear order, the
reference point can be selected arbitrarily so that, when viewed from an inertial
frame, the resulting orbit has arbitrarily large displacements away from a
Keplerian orbit. Finally, some applications are considered for displaced

geostationary orbits.

2. Two-Body Non-Keplerian Orbits

2.1 Continuous thrust

Consider the dynamics of a spacecraft at position r in a frame of reference R(x,y,z)
rotating with constant angular velocity ® relative to an inertial frame 1(X,Y,Z), as
shown in Fig. 1 (Mclnnes, 1997, 1998). The spacecraft experiences thrust induced
acceleration a and a two-body gravitational potential V. The dynamics of the
spacecraft S at position r = (x, Y, z) can be defined by an equation of motion in

the rotating frame R such that
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The gravitational potential V of the central body and the thrust-induced

acceleration a are defined as

v=-"*~ , a:{l}n
[ 2

where m is the mass of the spacecraft, n is the direction of the thrust vector and

is the two-body gravitational parameter. The condition for equilibrium in the

rotating frame of reference R is therefore given by

a=VV(r)+(o><(m><r)

@)
The required thrust magnitude and direction for can then be obtained as
T(r,@)=mVV(r)+ox(@xr) )
n(r’m): VV(I’)+ 0 X ((,0 X I’)
||VV (r)+m><(u)>< r)ﬂ (4b)

Using the thrust magnitude and direction defined by Egs. (4), surfaces of artificial
equilibria are generated in the rotating frame of reference, parameterised by the
angular velocity of the rotating frame w, =|w|. When viewed from an inertial
frame of reference an artificial equilibrium point traces a displaced circular orbit
of period 27/w,. Contours of constant thrust induced acceleration generated by

Eq. (4a) are shown in Fig. 2. The units are non-dimensionalised with z=1 so that

the unit of acceleration is the gravitational acceleration at unit distance from the



origin. The angular velocity of the rotating frame of reference is selected as

@, =1 so that a circular Keplerian orbit is found at unit distance in the X-Y plane,

as can be seen in the X-Z section shown in Fig. 2. Each point on a contour in Fig.
2 corresponds to a unique displaced circular orbit of period 2r. In addition,
radially displaced orbits are generated at the intersection of the contours with the
plane. These orbits exist for orbit radii both greater or less than the circular
Keplerian orbit a unit distance from the origin, again with period 2xr. If the
spacecraft S is located along the z- axis then it is in static equilibrium with the
thrust induced acceleration balancing the local inverse square gravitational
acceleration.

Previous studies have investigated families of orbits with different

functional forms of the free parameter w,, their stability properties and their

controllability (Mclnnes, 1997, 1998, Xu and Xu, 2009). It will now be shown
that the families of continuous thrust non-Keplerian orbits can be approximated
using impulsive thrust by creating a sequence of connected Keplerian arcs, with
impulses used to remove discontinuities in velocity at the junction between

neighbouring arcs.

2.2 Impulse thrust

The analysis of Section 2.1 provides the required thrust magnitude and direction
for generic families of continuous thrust non-Keplerian orbits. In this section, the
analysis is extended to investigate the use of periodic impulses to generate a
sequence of connected Keplerian arcs, which approximate continuous thrust non-
Keplerian orbits. The S spacecraft will be considered at some arbitrary position r
in the rotating frame of reference R, which can be decomposed into a position

p=(&7,¢), relative to an arbitrary point P at position T =(x,,Y,,2,), a shown

in Fig. 1. Viewed from an inertial frame of reference 1, the point P will trace a
displaced circular path. The goal is now to find conditions for a sequence of
Keplerian arcs p, each of which begins and terminates at P with impulses
connecting the arcs, as shown in Fig. 3. The point P will therefore trace a
displaced non-Keplerian orbit, while the trajectory of the spacecraft S will
approximate this displaced orbit by following a sequence of Keplerian arcs.

From Eq. (1), the dynamics of the spacecraft S at position r=F +p is
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described by

)~ -
L:_p)+ meM+mx(mx(F+p)):—VV(F+p)
dt dt (5)

which can be written as

—+2mx2—?+wx(wxp):—VV(F+p)—wx(me)

dt? (6)

If the displacement p of the spacecraft relative to the arbitrary point P at ris
small, then the gradient of the gravitational potential can be expanded to first

order as

p+....

VV(F+p):VV(F)+[
=r (7

ovVv }
or |,

where the Hessian matrix is evaluated at P. The linearised dynamics of the

spacecraft S relative to P are now described by

+2wx2—‘t)+(ox((oxp):{ag—:/} p—VV(F)-ox(oxT)

d’p
dt?

(®)

It can be noted that the last two terms of Eq. (8) do not vanish since the point P
does not lie on a Keplerian orbit. For the classical linear Clohessey-Wiltshire
equations (Clohessey and Wiltshire, 1966), the term VV(F)+ @ x (@x7)=0 on
a circular Keplerian reference orbit so that Eq. (8) becomes homogeneous. In
addition, the Hessian matrix of the gravitational potential simplifies to diagonal
form.

For the displaced non-Keplerian orbit problem considered in this paper,

the linear dynamics are non-homogeneous and can be written in compact form as
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where the skew symmetric gyroscopic matrix N is given by

0 20, 0O
N=-20, 0 O
0 0 O (10)
and the matrix M and non-homogeneous part Q are given by
VXX + a)oz ny VXZ
2
M=| Vv, V,+a," V,
sz sz sz
(11)
Q
Q = Qz

Due to the symmetry of the 2-body problem the condition y,=0 can be set to
simplify the subsequent analysis. However, this constraint is not used in the
analysis of the 3-body problem in Section 3 where the cylindrical symmetry of the
problem is broken. The components of the Hessian matrix of the gravitational

potential are then given by

2
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where V,, =V,, =0and V,, =V,, =0. The non-homogeneous terms are then given

by
— KX,
Q= W X @,
X2 + 22 (14a)
Q,=0 (14b)
_ - luzo
o T4 (14c)

The resulting system of equations is similar to that considered by Sawai et al
(2002) developed for stability and control analysis of a spacecraft hovering at an

asteroid.
Defining the system state vector X = (p,p)" for the spacecraft S it can be

seen that Eq. (9) can then be written in first order form as

X _Ax+B

dt (15)

where the system matrix A and non-homogeneous part B are given by
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A= 2
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o
0
0
B=
Q
0
Qs (17)

In order to obtain a general solution to Eq. (15) it will be necessary to diagonalise
the system matrix A. This can be achieved using the eigenvectors v; (i=1-6)
associated with the eigenvalues 4; (i=1-6) of the matrix. The eigenvalues can be

determined from the characteristic polynomial of the system matrix A from

det|AX — 21| =0in the usual manner. The characteristic polynomial then reduces

to a bi-cubic equation of the form
773+Kl772 +K,n+K,;=0 (18)
where 7 =A% and

K, =2w? (19a)

_ 4 bu 3u° 3,uw§(x§—22§)
2 =% (x§+z§)2+(x§+z§)3+ (x2+22)5/2

0 0

(19b)
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In general, the eigenvalue spectrum obtained from Eqg. (18) consists of two pairs
of conjugate imaginary eigenvalues and a pair of real eigenvalues. The

eigenvectors v; corresponding to each eigenvalue A; can be used to assemble a

matrix V:[Vl,...vi,...v6] from the eigenvectors which can then be used to
diagonalise the system matrix A (Betounes, 2010). The diagonal form of the

system matrix A is then defined by D = VAV where

(20)

Defining a new state vector U=V "X it can be seen that Eq. (15) can be

transformed to

Y _(viavu+vie
dt (21)

Finally, defining a matrix E as

exp(4,t)
E=

exp(ﬂ’Gt) (22)

10



it can be shown that Eq. (21) can be integrated directly and so the general solution

to the inhomogeneous linear system defined by Eq. (15) is given by

X(t)=V(E-1)D*V™'B + VEVX(0) (23)
where X(0) is a set of arbitrary initial conditions.

This general solution can then be more usefully written in terms of an

effective state transition matrix ®(t)=VE™V as

X(t)=®(t)X(0)+T (24)

where I'=V(E-1)D™V™B. Decomposing the state transition matrix and non-

homogeneous part as

(I)(t)z |:(I)11(t) (DIZ (t):|
(I)Zl(t) (1)22 (t) (25&)
e
I (25b)
the dynamics of the spacecraft S relative to the point P are defined by
{P(t )} _ {q)n (t) D, (t)}[P(O)} 4 |:rl:|
p(t) (I)Zl(t) (1)22 (t) p(O) FZ (26)

which provides the general solution to Eq. (8). The trajectory of S relative to P is

therefore given by

p(t)z q)ll(t)p(o)+(l)12 (t)p(0)+ I, (27)
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In order to generate a displaced non-Keplerian orbit the condition is set
thatp(z) = p(0), where zis the duration of the Keplerian arc described by Eq. (27).
This condition ensures that a sequence of connected Keplerian arcs are generated
which are continuous in position, but discontinuous in velocity. As will be seen
later 7 can be selected as a simple fraction of the orbit period of point P. Since the
point P is arbitrary, the initial conditions of S can be selected such that p(0)=0.

From Eq. (26) the required initial velocity to ensure that p(z)=p(0) is then given
by

p(0)=-@,(r)r, (28)

The velocity of S on return to P after time zis then

p(r)= @, (c)p(0)+ T, (29)

and so the impulse required to connect neighbouring Keplerian arcs is given by

Av = [(Dzz (T)(I)l_zl (T) -, (T)]Fl -I, (30)

as shown schematically in Fig. 3.

In order to illustrate the use of impulses to generate families of displaced
non-Keplerian orbits, the family of continuous thrust orbits shown in Fig. 2 will
be considered. Again, the angular velocity of the rotating frame of reference is
selected as @, =1, so that a circular Keplerian orbit will found at unit distance in
the plane. The reference point P in the rotating frame will be selected as
7 =(0.5,0,0.5). The non-Keplerian orbit will therefore have a radius and

displacement distance of 0.5 in non-dimensional units, as shown in Fig. 4. In
order to generate a sequence of Keplerian arcs which connect to form the

displaced orbit, the duration of each arc is selected as a simple fraction of the orbit

period 7 =27/w,N . Here N=10 is selected for illustration. Using the condition

12



p(r)=p(0) a sequence of 10 arcs are generated, where each arc returns to the
point P in the rotating frame, as can be seen in Fig. 4. The arcs are generated
using Eq. (27), the linear solution to Eq. (8), with the impulses connecting the
Keplerian arcs defined by Eqg. (30).

In order to evaluate the accuracy of the linear approximation, the two-
point boundary value problem defined by p(z)=p(0) can be solved numerically
using a shooting method for the full non-linear dynamics defined by Eq. (6). Fig.
5 shows the components of the displacement p = (5,77,{ ) of the spacecraft S from
the point P. It can be seen that the linear solution provides a good approximation
to the full non-linear dynamics of the problem in this case. Cleary for large
displacements about a planetary body, the required impulse magnitude will be
extremely large. However, Section 4 provides an example of a displaced
geostationary orbit where the impulse magnitude is modest.

2.3 Reduction to Clohessy-Wiltshire equations

As the number of Keplerian arcs increases it is expected that non-Keplerian orbits
using continuous and impulse thrust will match asymptotically. To demonstrate

this, the linearised dynamics at an arbitrary point P can be reduced to the
Clohessy-Wiltshire equations (Clohessey and Wiltshire, 1966). For y, =z, =0

the system matrix A and non-homogeneous part B from Eqgs. (16-17) reduce to

0 0 0o 1 0
0 0 o 0 1 0
, 0 0 o 0 0 1

H 2
A=l + o] 0 0 0 20, O
0 -f+02 0 -20, 0 O

XO

0 0 —% 0O 0 0

- - (31)

and

13



- - (32)

However, if P is then defined on a circular Keplerian orbit of radius X, then

w? = u/x? and so Eq. (8) reduces to

.. _ )
§—2w,n-3w,& =2,

(33a)
i+2m0,5=a, (33b)
.

S +ae =2 (330)

where (ag,a,pag) correspond to the components of continuous thrust induced
acceleration a in the local frame attached to P. The continuous thrust acceleration
is re-introduced to allow a comparison of continuous and impulse thrust non-

Keplerian orbits. For continuous thrust, the required acceleration components for

an equilibrium solution at some point p:(fo,O, {0) in the rotating frame of

reference can be obtained from Eqgs. (33) as

2
3, =—3w,5, (342)
a,=0 (34b)
R
a‘{ - wo 40 (3 4C)
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which can also be obtained from Eq. (3) for small displacements from a circular
Keplerian orbit in the plane.

If there is no thrust induced acceleration, then the Clohessy-Wiltshire
equations Eq. (33) have a general solution (Clohessy and Wiltshire, 1966) of the

form

(0)

)= F}mw){s@ Zwi} cos{ot) ¢ {Zi 450}

0 0 0 (35a)
77ﬁ)=={fhzl4—6ég}sin(a%t)4—{Ezil}cos(a%t)
a)O a)O
—[37, +6,& )t + [go - 29&0}
@ (35b)
£(t)= ¢, cos(e )+ 2 sin(wy)
@o (35¢)

A displaced non-Keplerian orbit can then be obtained using periodic impulses, as
discussed in Section 2.2. To maintain an out-of-plane displacement, repeated
vertical impulses are required such that ¢(r)=¢, where ris again the period
between impulses (Mclnnes, 1998). Then, using Eq. (35c), the required out-of-

plane velocity at the start of the Keplerian arc is given by

a=%aw{%ﬂ
2 (36)
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Due to the symmetry of the problem it can be seen that (T )=-£(0) and so the
effective out-of-plane acceleration @; provided by the repeated impulses is then

2£(0)/ 7 such that

2 = 20,¢, tan{a)"r}
T 2
@37)

If the time zbetween impulses is small, Eq. (37) can then be expanded to yield

1
a =0, +—ail T+

¢ 12 (38)

Comparing Eqg. (38) and Eq. (34c) it can be seen that to first order the required
accelerations are equal, with the higher order terms representing the difference in
required mean acceleration between the continuous thrust and impulse cases.

For a radial displacement, the condition 7(0)=0 will be used along with

the requirements 7(z)=0 and &(r)=¢,. Again using Egs. (35) it can be seen that

the required initial velocity components are given by

_ 3wté, sin(w,7/2)
3w, cos(w,7/2)-8sin(w,7/2)

(39a)

w,7cos(w,7/2) - 2sin(w,r/2)
3w, cos(m,z/2)-8sin(w,7/2)

77(0) = _660060
(39b)

However, it is found that ﬁ(r)= 77(0) and §(T)= —5(0) so that only repeated radial

impulses are required (Mclnnes, 1998). The effective radial acceleration a,
provided by the repeated impulses is then 25(0)/1. Expanding Eq. (39a) for

small periods it is found that
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a, =-3w¢, +%w§§072 +...
(40)

Again, comparing Eq. (40) and Eqg. (34a) it can be seen that to first order the
required accelerations are equal, again with the higher order terms representing
the difference in mean acceleration between the continuous thrust and impulse
cases. These approximations provide a simple means of assessing the required
acceleration and accumulated effective Av for small displacements in the vicinity
of a Keplerian orbit, along with the difference in cost of the continuous and

impulse thrust modes of operation.

3. Three-Body Non-Keplerian Orbits

3.1 Continuous thrust

The analysis provided in Section 2 can be extended to consider artificial equilibria
in the circular restricted three-body problem. Again, artificial equilibria can be
generated using continuous low thrust or periodic impulses to connect a sequence
of 3-body ballistic arcs. The analysis for the 3-body problem is similar to that

provided in Section 2. Here, the 3-body gravitational potential is defined as

(-a) 7

A @)

where the position of the spacecraft S relative to the two primary masses m; and
m; is defined by I, =(X+4,Y,2) and 1, =(L— 2 +X,Y,2), as shown in Fig. 6. The
mass ratio of the problem is defined by u = mz/(m1 + m2) where the gravitational
constant and the sum of the primary masses are taken to be unity. Unlike the
families of 2-body orbits, the angular velocity of the rotating frame of reference is
defined uniquely by the orbital angular velocity of the primary masses and so is
taken to be unity.
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Using this new potential, Eq. (4) can then provide the required thrust
magnitude and direction for equilibria in the rotating frame of reference, as used

by Morimoto et al (2007). Contours of equal thrust induced acceleration are
shown in Fig. 7 for a mass ratio of Z=3.04x10"° (Earth-Sun system). The
condition VV(r)+ o x (@ xr)=0 can be seen at the L; and L, natural equilibrium

points where a=0. For a modest thrust induced acceleration, nested surfaces of

artificial equilibria are generated in the vicinity of the natural equilibrium points.

3.2 Impulse thrust

Again, the procedure detailed in Section 2.2 can be followed to define the
requirements for periodic motion near artificial equilibria using impulsive thrust.
Periodic impulses are now used to generate a sequence of connected ballistic
three-body arcs, which approximate continuous thrust artificial equilibria. The
spacecraft S will again be considered at some position r in the rotating frame of

reference, which can be decomposed into a position p =(§,77,§), relative to an
arbitrary point P at position T =(x0, yo,zo), as shown in Fig. 6. If conditions can

be found for the spacecraft S to return to P then an approximation can be found to
the families of artificial equilibria using continuous thrust. The goal is therefore to
find conditions for a sequence of ballistic three-body arcs p, each of which begins
and terminates at P with impulses connecting the arcs. The spacecraft S will
therefore remain in the vicinity of P.

Using Eq. (41), the components of the Hessian matrix of the 3-body
gravitational potential defined by Eq. (11) are found to be

V. = 3&(_1+ﬁ+xo)2 _ /Zj
" ((—1+/'j+ X, ) +yZ+ 25)5/2 ((—1+/7+ X, ) +y2+ z§)3/2
3(-1+ )+, ) ~1+ [
~ 2 2, 2 P2 A 2 2, 2 V)2
((ﬂ+xo) +y0+zo) ((#+Xo) +yo+zo) (42a)
_ 3ﬁ(_1+ﬁ+xo )yo _ 3(_1+ﬁ)(/§+xo)yo
Xy - 5/2 - 5/2
(Crezex, P eyze22f" ((@ex ) +yi+z) u2b)
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3;‘(_1+ﬁ+xo)zo 3(_1+ﬁ)(ﬁ+xo)zo
V = ~ 2 2 2 5/2 N ~ 2 2 2 5/2
((_1+:U+Xo) +yo+zo) ((/J+Xo) +Y, T2,

Xz

(42c)
v - Bu(-1+a+x)y,  3=1+afa+x,)y,
yx T - 2 9 5 /2 - 2 2 5 \5/2
((—1+u+Xo) +yo+Zo) ((AHXO) +y0+zo) (42d)
v - 3y’ ) H
Y ((_1+ﬁ+x0)2+y§+z§)5/2 ((—1+ﬁ+x0)2+y§+z§)3/2
A-1+ilys —1+4
((/7 +X, ) + Yo+ 122 )5/2 ((ﬁ +X, ) + Yy +122 )3/2 (42¢)
V. = ‘?’ﬁyozo _ 3(_1+ﬁ)yozo
yz ((—1+/,7+X0)2+y§+25)5/2 (([[+X0)2+y§+25)5/2 a2
v - -1+ +x, )z, -1+ )iz +x,)z,
x — ) 2 2 )p/2 T - 2 2 2 /2
(Crezex, P eyz ezt (@ex)y +yi+2) w29
v 37,2, 31+,
0 ((—1+ Atx,) +Ye+2; )5/2 ((/:2 %) Yo +zg )5/2 (42h)
v - 3z ] H
: ((—1+ﬁ+x0)2 +y? +z§)5/2 ((—1+,1'J+x0)2 +y? +z§)3/2
R SNty
((ﬁ +X, ) +yl+22 )5/2 ((ﬁ +X,) + Y +12} )3/2 (42i)

while the non-homogeneous terms are given by



ﬁ(_1+ﬁ+xo) + (_1+ﬁ)(ﬁ+xo)

Q — +X,
Ccrrae Py e (e Fevieft T e
Iy (-1+a)y
Q, = ° + ° +Yo
’ ((—1+ a+x, ) +y2+2? )5/2 ((ﬁ +X, ) + Y2+ 2 )5/2 (43b)
Q _ ﬁzo + (—l+ﬁ)20
B N R R R )

Then, the conditions for the spacecraft S to return to the point P are again defined
by Eqg. (30) using the matrix entries defined by Eq. (42) and (43).

In order to illustrate the use of impulses to generate families of artificial 3-
body equilibria, the family of continuous thrust equilibria shown in Fig. 7 will be
considered. Eight reference points Pig in the rotating frame will be selected at
T =(0.99,+0.005,+0.005) and T =(1.01,+0.005,+0.005) in the vicinity of the
natural L; and L, points. In order to generate a sequence of ballistic 3-body arcs
which return to the point P, the duration of each arc is again selected as a simple
fraction N of the orbit period of the two primary masses. Here N=5 is selected for
illustration to generate large arcs (where N=10 was used in Section 2.2). Using the

condition p(z)=p(0) a sequence of arcs are generated, where each arc returns to

each point P in the rotating frame, as can be seen in Fig. 8. The arcs are again
generated using Eqg. (26), the linear solution to Eq. (8) with the potential defined
in Eg. (41) and the impulses connecting the arcs defined by Eq. (30). For the
example provided in Fig. 8 the impulse magnitude is 1082.2 ms™ for the Earth-
Sun system. Clearly this is large, but is more modest for points closer to the
natural equilibria.

Lastly, in order to evaluate the accuracy of the linear approximation, the
two-point boundary value problem defined by p(z)=p(0) can be solved
numerically using a shooting method for the full non-linear dynamics. Fig. 9

shows the components of the displacement p = (5,77,5) of the spacecraft S from

the point P. It can be seen that the linear solution provides a reasonable
approximation to the full non-linear dynamics of the problem. However, the
match is poorer than the 2-body problem due to the large trajectory loops

generated by using a smaller number of arcs with N=5, rather than N=10. A larger
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number of arcs will generate a smaller displacement of S from P and so better

accuracy for the linear solution.

4. Applications

Highly non-Keplerian orbits have a range of potential application, as discussed in
Section 1. Here, an example is provided for a displaced geostationary orbit.
Geostationary spacecraft typically use a station-keeping box sized at 0.05 deg of
orbit arc. This corresponds to a physical size of order 35x35 km. Figure 10 shows
a displaced orbit with a displacement distance of 35 km using both continuous
thrust and periodic impulses (N=10). Applications of such displaced orbits include
stacking geostationary satellite at crowded longitudes in a similar manner to the
solar sail displaced orbits considered by Forward (1984) and later Baig and
Mclnnes (2010) and Heiligers (2010). The required impulse magnitude for the
displaced orbit shown in Fig. 10 can be determined from Eq. (30) as 1.654 ms™,
so that the Av per orbit is 16.54 ms™. The required continuous thrust induced
acceleration can be determined from Egq. (4a) as 1.851x10™ ms?, so that the
effective Av per orbit for the continuous thrust case is 15.99 ms™. There is
therefore a modest penalty of order 0.5 ms™ for using the impulse mode rather
than the continuous thrust mode. In addition, continuous low thrust allows the use
of high specific impulse propulsion, such as an electric thruster with a specific
impulse of 3000 s, compared to a bi-propellant thruster with a specific impulse of
320 s used for the impulse mode (Heiligers, 2010). For a large 4000 kg
geostationary platform, the propellant mass per orbit for the continuous thrust case

is 2.15 kg, which rises to 21.02 kg for the impulse mode.

5. Conclusions

Families of displaced 2-body non-Keplerian orbits and 3-body artificial equilibria
have been extended by considering impulse rather than continuous thrust. The
displaced non-Keplerian orbits comprise a sequence of individual Keplerian arcs
connected by impulses. The sequence of arcs are therefore continuous in position,
with discontinuities in velocity which are removed using the impulses. For

frequent impulses it has been shown that the new families of orbits approximate
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continuous thrust non-Keplerian orbits. The conditions for displaced non-
Keplerian orbits using impulse thrust were found by linearising the dynamics of
the two and three-body problems in the vicinity of an arbitrary reference point in a
rotating frame. While the motion of the spacecraft relative to the reference point
was considered at linear order, the reference point was be selected arbitrarily so
that when viewed from an inertial frame of reference the non-Keplerian orbit has

arbitrarily large displacements.
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Figure Captions

Figure 1. Frame R rotating with angular velocity e relative to inertial frame I.
Reference point P at position r and spacecraft S at position p relative P.

Figure 2. Contours of non-dimensional thrust induced acceleration for artificial
equilibria in rotating frame R (2-body problem).

Figure 3. Sequence of Keplerian arcs which begin and terminate at P connected
by impulses (2-body problem).

Figure 4. Displaced orbits constructed from sequence of Keplerian arcs; Orbit |
¥ =(0.5,0.0,0.5), Orbit Il T =(0.75,0.0,0.75), Orbit Il T =(1.0,0.0,1.0). Dashed
lined indicates equivalent constant acceleration displaced orbit.

Figure 5. Comparison of linear and non-linear solutions for Orbit 1. Solid line
linear solution, dashed line non-linear solution.

Figure 6. Frame R rotating with angular velocity |w||=1 relative to inertial frame
I. Reference point P at position r and spacecraft S at position p relative P.

Figure 7. Contours of non-dimensional thrust induced acceleration for artificial
equilibria in rotating frame R (3-body problem) for z =3.04x107°.

Figure 8. Atrtificial 3-body equilibria constructed from sequences of 3-body arcs;
P; T =(0.991,0,0.005), P, T =(0.991,0,-0.005), P3 T = (0.991,0.005,0.0),

P, T =(0.991,-0.005,0.0), P5 T =(1.011,0,0.005), Ps T =(1.011,0,-0.005),

P;T =(1.011,0.005,0.0), Pg T =(1.011,-0.005,0.0).

Figure 9. Comparison of linear and non-linear solutions for P1. Solid line linear
solution, dashed line non-linear solution.

Figure 10. Displaced two-body geostationary orbit (35 km displacement).
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