Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

A fast, effective local search for scheduling independent jobs in heterogeneous computing environments

Ritchie, G. and Levine, J. (2003) A fast, effective local search for scheduling independent jobs in heterogeneous computing environments. In: Proceedings of the 22nd Workshop of the UK Planning and Scheduling Special Interest Group. UNSPECIFIED.

[img]
Preview
PDF
10.1.1.123.651_1_.pdf - Accepted Author Manuscript

Download (69kB) | Preview

Abstract

The efficient scheduling of independent computational jobs in a heterogeneous computing (HC) environment is an important problem in domains such as grid computing. Finding optimal schedules for such an environment is (in general) an NP-hard problem, and so heuristic approaches must be used. Work with other NP-hard problems has shown that solutions found by heuristic algorithms can often be improved by applying local search procedures to the solution found. This paper describes a simple but effective local search procedure for scheduling independent jobs in HC environments which, when combined with fast construction heuristics, can find shorter schedules on benchmark problems than other solution techniques found in the literature, and in significantly less time.